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ABSTRACT: A data compression scheme that exploits 
locality of reference, such as occurs when words are used 
frequently over short intervals and then fall  into long 
periods of disuse, is described. The scheme is based on a 
simple heuristic for self-organizing sequential search and 
on variable-length encodings of integers. We prove that it 
never performs much worse than Huffman coding and 
can perform substantially better; experiments on real files 
show that its performance is usually quite close to that of 
Huffman coding. Our scheme has many implementation 
advantages: it is simple, allows fast encoding and decod- 
ing, and requires only one pass over the data to be com- 
pressed (static Huffman coding takes huo passes). 

1. INTRODUCTION 
Data compression schemes can be categorized by the 
unit of data they transmit. Huffman [14] codes are 
typical of “defined-word” schemes: the context de- 
fines sequences of input symbols (which we shall 
call words) that are transmitted by a variable-length 
code. At the other extreme, Ziv-Lempel [26] codes 
transmit variable-length sequences of input symbols, 
often using a fixed-length code. 

In this article we describe a defined-word scheme 
that uses a technique from another domain that 
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deals with defined words: self-organizing sequential 
search, in which we wish to maintain a sequential 
list of words so that frequently accessed words are 
near the front. Our data compression scheme uses a 
self-organizing list as an auxiliary data structure, 
and employs short encodings to transmit words near 
the front of the list. The scheme never performs 
much worse than Huffman coding. If the message to 
be transmitted exhibits locality of reference (i.e., if 
the local frequency of words changes dramatically 
within the message), the scheme performs better 
than Huffman coding because a word will have a 
short encoding when it is used frequently and a long 
encoding when it is used rarely. 

Section 2 describes the basic scheme and several 
dimensions along which it may vary. Mathematical 
analyses of the performance of the scheme are given 
in Section 3 and in the Appendix. Experimental evi- 
dence is presented in Section 4. Section 5 discusses 
implementation considerations, and Section 6 con- 
tains concluding remarks. A preliminary version of 
our results appeared as a conference paper [Z]. 

2. THE THEME AND SOME VARIATIONS 
We shall illustrate our scheme by compressing sim- 
ple “telegraph” messages of words consisting of up- 
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per case letters separated by single spaces and termi- 
nated by a final “ 0 .  For concreteness, we will trans- 
mit the message 

THE CAR ON THE LEFT HIT THE CAR I LEFT 0 

Sender and receiver maintain identical word lists 
using the “move-to-front” heuristic: after a word is 
used it is deleted from its current position and 
moved to the front of the list. This attempts to en- 
sure that frequently used words appear near the 
front of the list. 

The list is initially empty. To transmit the word W, 
the sender looks it up in the list. If it is present in 
position I, the sender transmits I, which the receiver 
decodes by writing the Ith element in the list; both 
then move W to the front of their respective lists, 
shifting the words in positions 1 . . I  - 1 to positions 
2.1. If W is not in the list of N words, the sender 
reacts as though it were in the N + 1st position and 
sends the integer N + 1 followed by the word W 
[which the receiver expects because N + 1 is greater 
than the size of the current list); both sender and 
receiver then move W to the front of their lists. For 
example, after transmitting the first three words of 
the above message, both parties have identical lists 

ON CAR THE 

The next word, THE, is encoded by the integer 3. 
The entire message is encoded as 

1 THE 2 CAR 3 ON 3 4 LEFT 5 HIT 3 5 6 I 5  0 

Each word is transmitted as a string of letters just 
once; subsequent occurrences are encoded by inte- 
gers. The integer encoding a word is one greater 
than the total number of different words that have 
occurred since its last previous appearance [ZO, 211. 

property of our scheme: if a word has been recently 
used then it will be near the front of the list and 
therefore have a short decimal encoding. Because 
the integer I requires roughly log,, I characters to 
encode, frequent words are transmitted with few 
characters. There are, however, many variations on 
the basic idea. 

Lexical Analysis. English text may be divided into 
“words” in many ways. A simple scheme might clas- 
sify each character as a word, while a more complex 
scheme could find- true English words, together with 
capitalization information. Transmitting program 
text, executable object code, or digitally encoded 
pictures demands a more subtle definition of words. 

List Organization Discipline. Bentley and McGeoch 
[I] and Sleator and Tarjan [ZO, 211 refer to many 
self-organization heuristics other than move-to-front. 
The transpose rule, for instance, moves the accessed 

This trivial example illustrates the most important 

element one closer to the front; it is an instance of 
the move-ahead-k heuristic with k = 1. 

List Length. The above example assumed an infi- 
nite list; the scheme may also be implemented with 
fixed-size lists. The move-to-front scheme with a fi- 
nite list induces a least-recently-used discipline of 
discarding words from the list (which, in this con- 
text, may be viewed as a word cache). 

Encoding List Position. Position in a finite list can 
be encoded with a fixed-length binary code, but the 
scheme is usually more effective if used with a vari- 
able-length code. If the data are to be transmitted as 
they are read, the variable-length prefix encodings 
of integers described by Elias [7] and by Bentley and 
Yao [3] provide suitable encodings; these will be dis- 
cussed in detail later. If, on the other hand, the sys- 
tem can make two passes over the data, then the 
first pass can count the number of times each list 
position is accessed and the second pass can encode 
the positions using a Huffman code. 

Transmission of New Words. This is a classical 
problem in information theory. 

We shall see several combinations of these choices 
in the next sections. 

3. THEORETICAL ANALYSIS OF 
PERFORMANCE 
In this section we show that the move-to-front 
scheme is sometimes much better than Huffman 
codes but can never be much worse. Here we sum- 
marize our theoretical results; the Appendix con- 
tains a more complete analysis and proofs. 

A simple example shows that the move-to-front 
scheme can be much better than any static encoding 
scheme. Consider the sequence formed by repeating 
each of n words n times: 1”2” . . . n”. A static Huff- 
man code uses roughly log n bits per word sent,’ 
whereas the move-to-front scheme uses only a small 
constant number of bits per word. 

To analyze the move-to-front scheme we need to 
specify a particular encoding of the integers. One 
method is to prefix the binary representation of the 
integer i 2 1 with llog iJ 0’s. This yields a prefix 
code since the total length of a codeword is exactly 
one plus twice the number of 0’s in the prefix. Once 
the length is known the boundary between code- 
words can be found. This method encodes i with 
1 + 2 Llog i J  bits. 

We will analyze the scheme in which the size of 
the move-to-front list is equal to the number of dif- 
ferent words to be sent, and the list is initialized 
with all the words in their order of occurrence in 
the sequence of words to be sent. This is the scheme 

’ All logarithms without an explicit base are binary in this article. 
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that was outlined in Section 2, except that we ignore 
the cost of sending the raw words (we ignore this 
cost in both of the schemes being compared). Let 
P M F ( X )  be the average number of bits per word used 
to compress a sequence X with the move-to-front 
scheme as described above. Let P H ( X )  be the analo- 
gous quantity for a static Huffman code. With the 
above encoding of the integers we have 

P M F ( X )  5 ~ P H ( X )  + 1. (1) 

We will now sketch a proof of this theorem; a 
proof of a stronger result appears in the Appendix. 
Suppose in the sequence X of length N, the symbol a 
occurs Na times. The distance a can move from the 
front of the list between successive occurrences of a 
is bounded by the number of other accesses between 
these occurrences. The average size of these gaps 
between successive accesses to a is about N/Na. If a 
were at its average position whenever it occurred in 
the sequence, then the number of bits needed to 
transmit each occurrence would be 2 log(N/Na) + 1 
bits. Although a is not always at this position in the 
list, the concavity of the log function implies that 
2 log(N/Na) + 1 is an upper bound on the average 
cost of transmitting an a. Since the cost of transmit- 
ting a with an optimum prefix code is at least 
log(N/Na), the result follows. 

stronger results can be proved. For example, 
By using more sophisticated encodings of integers, 

P M F ( X )  5 1 + P H ( X )  + 2 log(1 + P H ( X ) ) .  

These results compare two schemes that differ in 
two important ways. The move-to-front scheme is 
dynamic (the encoding of a word may change with 
time), whereas Huffman codes are static (they are 
fixed in advance). This should, of course, give move- 
to-front an advantage. On the other hand, the move- 
to-front scheme works on-line (words are transmit- 
ted as they appear), whereas Huffman coding is off- 
line (it requires a pass over all the data before any- 
thing is sent). 

Gallager [lo] and Knuth [16] have studied a dy- 
namic version of Huffman coding in which an opti- 
mum code is maintained based on the frequencies of 
words so-far transmitted. Recently, Vitter [25] has 
shown that with dynamic Huffman coding the aver- 
age number of bits per word is at most twice the 
number for static Huffman coding. He has also 
shown that a modified scheme uses at most one 
more bit per word than static Huffman coding. 
These dynamic schemes run on-line and thus avoid 
the two passes necessary for static Huffman coding, 
but they still have the drawback that they do not 
exploit locality of reference. Vitter's lower bounds 
on dynamic Huffman coding imply that inequalities 

(2) 

(1) and (2) remain true if H is a dynamic Huffman 
scheme, provided that the additive constant 1 is re- 
placed by 2. 

A theorem in the Appendix compares the per- 
formance of the move-to-front method when com- 
pressing a discrete memoryless source with the en- 
tropy of the source. This result shows that the move- 
to-front scheme is asymptotically optimum (see Gal- 
lager [9]) because 

(3) 

where H ( s )  is the entropy of the discrete memoryless 
source s which generates the sequence X and 
( P M F ( X ) )  is the expected number of bits per word 
sent by the move-to-front scheme averaged over all 
sequences. 

If the cost of rearranging the items in the list is 
high, then a modified version of the move-to-front 
scheme called intermittent-move-to-front can be 
used. This is actually a family of schemes parame- 
terized by an integer 7 2 1. Rather than moving an 
item to the front each time it is accessed, the inter- 
mittent scheme moves an item to the front every 7th 
time it is accessed. To do this, the method maintains 
a count of the number of accesses to each item 
since its last move. (Bitner [4] called this scheme 
wait-c-and-move, and analyzed it as a list updating 
heuristic.) 

We can prove nearly as strong a theorem about 
the performance of intermittent-move-to-front as we 
can about ordinary move-to-front : 

PIMF(X) 5 1 + PH(X)  + 21og(l + PH(X) )  + c (4) 

for an arbitrary sequence X ,  where c + 0 as the 
length of the sequence goes to infinity. Furthermore, 
when the sequence X is generated by a discrete 
memoryless source s, we have 

Therefore, the intermittent move-to-front scheme is 
also asymptotically optimum. 

4. EXPERIMENTAL ANALYSIS OF 
PERFORMANCE 
To gain further insight into the performance of our 
scheme we have implemented prototypes of the fol- 
lowing three compression algorithms. 

Byte-Level Huffman Code. A Huffman code is used 
on individual bytes. We did not charge for transmit- 
ting the Huffman tree, which requires less than 200 
bytes. 

Word-Level Huffman Code. Words were defined as 
longest sequences of alphanumeric and nonalphanu- 
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TABLEI. c-ompmm . produced by Huffman Coding and the Move-*Front Scheme 

PROGRAM 

(PASCAL 

TERMINAL 1 SESSION 

SECTION r 
SIZE IN 
BYTES 
20593 
19118 
17160 
17470 
18441 
16282 
23225 
31 930 
19144 
14673 
8535 

12833 
142762 

20616 
18225 
22360 
17471 
4 5709 
15104 
1911 3 
22346 

WFMAN CODE 
BYTE WORD 

5.285 2.958 
4.576 2.321 
5.248 3.026 
5.210 3.520 
5.288 3.585 
5.150 2.316 
5.321 2.219 
5.102 2.467 
5.267 2.678 
5.124 2.521 
5.082 2.662 
5.349 2.822 
5.168 3.412 

4.832 3.460 
4.748 3.374 
4.978 3.698 
4.878 3.747 
4.883 3.617 
4.856 3.453 
5.073 3.530 
4.902 3.054 

MOVE - TO-FRONT CACHE 
8 16 32 64 128 256 

4.253 3.785 3.385 3.049 2.917 2.822 
3.071 2.356 2.245 2.196 2.183 2.233 
4.672 4.147 3.630 3.21 7 3.033 3.019 
4.510 4.028 3.814 3.637 3.413 3.379 
4.505 4.088 3.645 3.388 3.263 3.270 
4.044 3.517 2.784 2.368 2.253 2.271 
4.025 3.269 2.711 2.408 2.269 2.113 
4.468 3.892 3.312 2.856 2.661 2.501 
4.424 3.902 3.392 3.035 2.801 2.642 
4.323 3.750 3.327 2.906 2.580 2.454 
4.452 3.968 3.446 3.022 2.778 2.675 
4.343 3.886 3.478 3.177 2.945 2.627 
5.101 4.783 4.504 4.212 3.929 3.685 

meric characters. This divides the input stream into 
two disjoint classes, which we therefore compressed 
separately; the decoder knows to alternate between 
the two classes when decoding. No case information 
was recorded; “the” and “The” were thus treated as 
distinct words. The words were transmitted using a 
byte-level Huffman code (as above, without charge 
for transmitting the tree). 
MTF Cuche. Many attributes of this scheme are 

the same as for the word-level Huffman code, in- 
cluding word definition, two-word sets, lack of case 
information, and transmission of words. Because 
there are two-word sets, the 8-element MTF cache 
stores 16 words (8 alphanumeric and 8 nonalphanu- 
meric). For ease of implementing the prototype, we 
encoded the position in the list by a Huffman code, 
which implies that an implementation would have 
to make two passes over the data. 

None of the implementations actually compresses 
and restores data; rather, they measure the effi- 
ciency of the various approaches. The performance 
of the MTF cache scheme tested can be no worse 
than the method using a fixed encoding of the posi- 
tions in the list, but it could be better. We view this 
work only as a preliminary experiment to demon- 
strate the plausibility of the scheme and to gain in- 
sight into its behavior. 

The results of the experiments are presented in 
Table I. The numbers show the bits per character 
used by each scheme (the original encoding uses 8 

4.826 4.551 
4.807 4.471 
4.985 4.695 
4.880 4.629 
4.971 4.638 
4.837 4.486 
4.923 4.579 
4.723 4.270 

4.274 3.958 
4.164 3.879 
4.424 4.140 
4.382 4.125 
4.363 4.108 
4.136 3.840 
4.239 3.934 
3.819 3.547 

3.735 3.559 
3.632 3.471 
3.992 3.852 
3.967 3.847 
3.921 3.739 
3.637 3.509 
3.729 3.594 

5.5 1 * - - .  TERMINAL SESSION 4 
--- BOOK SECTION 
- PROGRAM TEXT 

- 

- 
- 

- 
- 
- 

- 
B.HUF. 8 16 32 64 128 256 W. HUF. 

COMPRESSION SCHEME (CACHE SIZE) 

FIGURE 1. Graph of the Data in Taw I 

bits per character, but that can be easily reduced to 
7). The C and Pascal programs were written by sev- 
eral different programmers; the book sections (writ- 
ten by two sets of multiple authors) include TROFF 
formatting commands. The terminal session is the 
transcript of a several-hour session (we include it to 
underscore the point that the performance of the 
various schemes is quite dependent on the context). 

graph of Figure 1, in which each file is represented 
Most of the data in the table are represented in the 
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FIGURE 2. compclrkon Between Word-Based Huffman Coding 
and the Move-to-Fmnt Scheme With a Word-List Size of 258 

by a line. Each line represents (from left to right) the 
cost of the byte-level Huffman encoding, MTF cache 
encodings of increasing size, and the word-level 
Huffman encoding. 

This graph tells several stories. It is obvious that 
the three types of input have different characteris- 
tics; there are enough data on program text and book 
sections to draw plausible conclusions. Byte-level 
Huffman codes for the book sections are roughly as 
effective as the 8-element MTF cache; as the cache 
increases the move-to-front scheme shows steady 
improvement, but even at the 256-element cache it 
is still somewhat inferior to word-level Huffman 
codes. The relative ordering of the book sections is 
quite stable through all the encoding schemes. 

The programs differ dramatically from the book 
sections. Byte-level Huffman codes are less effective 
for programs (presumably due to a larger character 
set), but the 8-element cache is already down to 
about 4 bits per character (presumably due to strong 
locality of reference). The improvement with in- 
creasing cache size is erratic; some documents even 
exhibit nonmonotonicity (retransmitting a few 
words costs less than sending longer codes for the 
words that are ,kept in the cache). The 256-element 
MTF cache is a little more effective than word-level 
Huffman codes. The outlying program contains a 

large table that represents legal hyphenations of 
English words, so one might expect it to be quite 
different. 

The word-level Huffman encoding is compared to 
the 256-element MTF cache in the graph of Figure 2. 
For program text, the 256-element MTF cache is 
usually superior to Huffman codes; it requires be- 
tween 2.1 and 3.4 bits per character (which repre- 
sents a space reduction factor of between 2 and 4). 
For book sections, the word Huffman code is slightly 
better; it uses from 3.05 to 3.75 bits per character. 
All in all, though, the two schemes are quite compa- 
rable. 

5. IMPLEMENTATION ISSUES 
It is easy to implement the move-to-front scheme if 
efficiency is not important. In this section we de- 
scribe an efficient implementation of the scheme, 
designed to minimize the worst-case running time to 
within a constant factor. The time to compress (en- 
code) or expand (decode) a word is proportional to 
the total number of bits in the expanded and com- 
pressed forms of the word. We shall assume that the 
move-to-front word list is of fixed finite size n. Our 
computation model is a sequential random access 
machine with unit cost measure. 

rithms precisely. There are two parts to each: we 
must convert a word into the corresponding integer 
list position (or vice-versa) and we must convert an 
integer into the corresponding prefix code (or vice- 
versa). We shall use the following operations on the 
word list: 

position(w): Compute and return the position of 
word w in the word list, or n + 1 if w is not in 
the list. (The positions in the list are indexed 
from 1 to n.) 

word( p ) :  Compute and return the word in position 
p in the list. 

rntf(p): Move the word in position p to the front of 
the list. 

insert(w): Insert word w at the front of the list. 
delete( p): Delete the word in position p of the list. 
To manipulate the prefix codes for the integers we 

encode( p ) :  Compute and return the prefix code of 

decode: Read bits from the input until an entire 

Let us define the compression and expansion algo- 

need two primitives: 

the integer p. 

prefix codeword has been read; then return the 
corresponding integer. 

The compression algorithm can be implemented 
as the following program (written in a variant (Tar- 

324 Communications of the ACM April 1986 Volume 29 Number 4 



Research Contributions 

jan [23,  pp. 12-14]) of the guarded command lan- 
guage of Dijkstra [6]) applied to a word w:  

compress: p := position(w); 
i f  p < n + 1 + 

mtf(p);  c := encodell); 
output c; 

) p = n + l +  
delete(n); insert(w); c := encode(n + 1); 
output c; output w in raw form 

f i ;  

The expansion algorithm can be implemented as 
the following program: 

expand: p := decode; 
i f p < n + l +  

mt f (p ) ;  w := word(1); 
output w 

J p = n + l +  
read a word w from the input in raw 

form; 
delete(n); insert(w); 
output w 

f i ;  

To implement the primitive operations we need 
four data structures: one each for encoding and de- 
coding integers and one each for converting words 
into list positions and vice-versa. The various opera- 
tions will have the following running times: O( I c I) 
for encode(p) and decode, where c is the relevant 
codeword and I c I is its length; O(1og p + I w I )  for 
position(w) and word(p); O(1og p) for mtf(p);  O(l w I) 
for insert(w); O(1) for delete@). We assume that the 
length of a prefix codeword grows with p; that is, 
I c( p) I is a nondecreasing function of p, where c( p) is 
the codeword of integer p. This assumption implies 
by counting that p I 2Ic@)', that is, log p I I c ( p )  I .  By 
substituting I c I for log p in the running times of the 
operations and examining the programs above we 
see that the time to compress or expand is bounded 
by O( I w I + I c I), where w and c are the word in- 
vovled and its compressed form. 

It remains for us to describe the data structures 
and the implementation of the primitive operations. 
Let us begin with the data structures for prefix cod- 
ing of integers. We shall describe general-purpose 
methods that apply to any prefix code; for specific 
codes such as those discussed in Section 3 and the 
Appendix; special-purpose algorithms can be used 
instead. 

To implement encode, we use an array with posi- 
tions 1 to n + 1, with position p holding the code- 
word for p. Then encode takes a single array access 
and O(1) time, or O( I c I) time if we charge one per 
bit for reading out c. 

To implement decode, we use a binary trie (Knuth 
[15 ,  pp. 481-4991). This is a binary tree such that 
each left edge (edge to a left child) is labeled 0 and 
each right edge (edge to a right child) is labeled 1 .  
Each path through the tree corresponds to the word 
obtained by concatenating the labels of the edges 
along the path (top-down). To represent a prefix 
code, we construct a trie in which the paths from 
the root to the leaves (nodes with no children) rep- 
resent the codewords (constructing such a trie is 
possible because of the prefix property). In each leaf 
we store the corresponding integer. To perform de- 
code, we start at the trie root, read bits from the 
input, and follow corresponding edges of the trie un- 
til reaching a leaf; then we return the integer in the 
leaf. Performing decode takes O( I c I) time. 

Maintaining the word list efficiently is somewhat 
more complicated. We use two interlinked data 
structures, a binary trie to convert words into inte- 
ger positions, and a binary tree to represent the 
order of words in the word list. (See Figure 3, p. 326). 

The trie contains marked and unmarked nodes; 
node x is marked if  the path from the root to x 
corresponds to (the binary representation of) a word 
in the word list. Given a word w in the list, the 
corresponding node can be found in O( I w I) time by 
traversing the appropriate path down from the root 
in the trie. 

The binary tree contains one node per word in the 
word list; the node contains the corresponding word. 
Symmetric order in the tree corresponds to front-to- 
back order in the word list. (Symmetric order is de- 
fined recursively as follows: for any node x,  all nodes 
in its left subtree are less than x,  and all nodes in its 
right subtree are greater than x.) The size of a node is 
the number of nodes in the subtree rooted there. 
Every node in the tree contains pointers to its parent 
and to its left and right children. Every node except 
those on the leftmost and rightmost paths (the paths 
from the root to the leftmost (smallest) and rightmost 
(largest) nodes) contains its size. Every node on the 
leftmost path contains a mark indicating that it is on 
the leftmost path. 

We access the tree via a pointer to its leftmost 
node. If the tree is balanced, we can find the pth 
node in symmetric order in O(1og p) time by starting 
at the leftmost node, walking up the leftmost path, 
accumulating size information in right children, and 
walking down into the subtree containing the pth 
node. Conversely, given a pointer to any node in the 
tree, we can compute its symmetric-order position p 
in O(1og p) time by walking up from the node until 
reaching the leftmost path and then walking down 
to the leftmost node, accumulating size information 
along the way. 
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T R I E  THEE 

FKillRE3. Data StructuresRepresentingtheListofWordr(in 
Binary) [Ol, 1010,0100,01101,1011]. Marked nodes in the trie are 

cirded. 

The trie and the tree are linked together as fol- 
lows: each marked node in the trie contains a 
pointer to the corresponding node in the tree, and 
vice-versa (see Figure 3). To compute position(w), we 
walk down the path in the trie corresponding to w,  
jump to the corresponding node in the tree, and 
compute the symmetric-order position p of this node 
as described above. This takes O(1og p + I w I) time. 
To compute word(p), we find the pth node in the 
tree and return the word contained there. This takes 
O(1og p) time, or O(1og p + I w I) time if we charge 
one per bit for reading out w.  

The update operations (mtf( p), insert(w), and 
delete( p ) )  are more difficult to implement because 
they must modify the data structures. To make these 
operations efficient, we make the binary search tree 
into a finger search free with fingers at the leftmost 
and rightmost nodes. A finger search tree [5] is a 
data structure such that an insertion or deletion at a 
position d away from a finger takes O(1og d) time. 
There are ways to implement a finger search tree to 
obtain the O(1og d) time bound either in the worst 
case (Huddleston [12], Kosaraju [17], Tsakalidis [24]) 
or in the amortized (time-averaged) case (Huddles- 
ton and Mehlhorn [13], Maier and Salveter [18]). 
Any of these methods will suit our purposes. The 
only modification that must be made to these struc- 
tures is that the size information must be updated 
after an insertion or deletion, but this does not affect 
the running time, given that we do not need to 
maintain the size information along the leftmost and 
rightmost paths. 

We perform the update operations as follows. To 
carry out mtf( p), we find the node in position p in 
the tree, delete it, and insert it in the leftmost posi- 
tion. This takes O(1og p) time. (The trie does not 
change.) To carry out insert(w), we put the word w 

FIGURE 4. The Compressed Form of the Trle in F i  3 

into the trie, insert a node containing w into the tree 
at the leftmost position, and link the corresponding 
trie and tree nodes together. This takes O( I w I) time. 
To carry out delete@), we delete the nth node in the 
tree (this takes O(1) time starting from the right fin- 
ger) and delete nodes in the trie, starting with the 
node representing the deleted word w. and walking 
up until finding a node with a marked descendant 
other than w.. (The node at which we stop is w, if 
w, has at least one child, or the nearest ancestor of 
w, with at least two children otherwise.) 

Deleting w, from the trie using this method takes 
O( I W ,  I) time, whereas our goal is an O(1) time 
bound. There are at least four ways to make deletion 
more efficient, depending on which ground rules we 
are willing to accept. First, if the word list is large 
enough to hold all words that are ever compressed 
then deletion never takes place. Second, if we are 
prepared to accept an amortized time bound, we can 
charge the time for a trie deletion to the correspond- 
ing insertion. Third, we can delete a word in the trie 
by merely unmarking the corresponding node, and 
run a background process that deletes unneeded trie 
nodes. Fourth, we can compress the trie, so that 
each edge represents a bit string rather than just a 
single bit. (See Figure 4.) Then a deletion requires 
removing at most a single edge, and even if the bit 
string associated with an edge is stored in a linked 
list, returning the entire linked list to the free list 
takes O(1) time. 

This implementation, though theoretically effi- 
cient, is more complicated than one would like. A 
simpler, practical alternative is to use a hash table in 
place of the trie for representing words and a self- 
adjusting search tree (Sleator and Tarjan [19, 221) in 
place of the finger search tree for representing the 
word list. The hash table will have an O(1) average 
time bound for inserting and deleting words, and it 
is conjectured that self-adjusting search trees sup- 
port accesses, insertions, and deletions in the vicin- 
ity of a finger in O(1og d) amortized time (Sleator 
and Tarjan [22]). Thus this alternative implemen- 
tation is probably efficient in theory as well as in 
practice. 
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6. REMARKS 
We have described a simple data compression 
scheme and analyzed its performance both theoreti- 
cally and experimentally. Both analyses suggest that 
the method may be useful in practice. An intriguing 
area for future research is to devise other locally 
adaptive data compression schemes and compare 
them with the move-to-front scheme. Dynamic Huff- 
man coding can be made locally adaptive by keeping 
a “window” as suggested by Knuth [16], maintaining 
a Huffman tree for word frequencies within the win- 
dow. Another possibility is to maintain a dynamic 
Huffman tree based on a weight for each word that 
is incremented by one each time the word is com- 
pressed; periodically all word weights are multiplied 
by a constant factor less than one. Recently Elias [a] 
independently discovered the move-to-front scheme 
and derived inequalities (1) and (2). He also proposed 
a related scheme called interval coding, in which a 
word is encoded as a prefix code of the number of 
words occuring since its last appearance. Elias 
showed that inequalities (1) and (2) hold for interval 
coding (which also follows from our analysis). Inter- 
val coding always needs at least as many bits as the 
move-to-front scheme but is easier to implement. It 
would be useful to derive further results comparing 
these locally adaptive schemes. 

It is important to note that with our scheme loss of 
synchronization between sender and receiver can be 
catastrophic, whereas this is not true with static 
Huffman coding. This suggests the study of adaptive 
schemes that might overcome this problem. 

APPENDIX: ANALYSIS 
To analyze our scheme we need to have specific 
prefix codes for the integers. Elias [7] and Bentley 
and Yao [3] describe a series of encoding schemes in 
which the integer i is encoded with roughly log i 
bits. The various schemes differ in their choice of 
trade-off between performance on small numbers 
and performance on large numbers. 

The simplest of the schemes encodes the integer 
i 2 1 with 1 + 2 Llog i J  bits. The encoding of i 
consists of Llog iJ 0’s followed by the binary repre- 
sentation of i (which takes 1 + Llog i J  bits, the first of 
which is a I). This results in a prefix code since the 
total length of a codeword is exactly one plus twice 
the number of 0’s in the prefix. Once the length is 
known the boundary between codewords can be 
found. 

Another scheme results if we replace the Llog iJ 
0’s followed by a 1, by a two part prefix (an encoding 
of 1 + Llog iJ by the above scheme) which takes 1 + 
2 Llog(1 + Llog iJ)J Bits. Thus we have a scheme that 

encodes i with 1 + Llog iJ + ZLlog(1 + log i)J bits. 
(Note that Llog(1 + Llog i J )J  = Llog(1 + log i)J.) 

These ideas can be applied again to give an en- 
coding for i with 1 + Llog i J  + Llog(1 + log i)J + 
2Llog(l + log(1 + log i))J bits. This process can be 
continued; however, the codes that result are better 
only for astronomically large numbers. 

Knowing the range of numbers to be encoded in 
advance can be used to advantage. For example, if 
the numbers are bounded above by n,  then in the 
first scheme the Llog iJ 0’s followed by a 1 can be 
replaced by Llog(1 + log n)J bits, giving an encoding 
for i with Llog i J  + Llog(1 + log n)J bits. The same 
idea applied to the second scheme gives an encoding 
of i in Llog i J  + Llog(1 + log i ) J  + Llog(1 + log(1 + 
log n)))J bits. 

For the following discussion we assume that an 
encoding of the integers has been chosen, and that 
the number of bits needed to encode the integer i is 
at most f(i), where f(i) is a concave monotonically 
increasing function defined on real values of i 2 1. 
For example, if we choose the second scheme then 
we can let f(i) = 1 + log i + 2 log(1 + log i). We 
assume that the input stream has been partitioned 
into a sequence of dictionary words, which we 
shall call symbols. Let the sequence of symbols be 
X = xl, x z ,  . . , , xN. The symbols are taken from a 
dictionary S of size n.  Let PMF(X, f )  be the average 
number of bits per symbol needed to transmit X by 
the move-to-front scheme using a code with code- 
word length function f. That is, PMF(X) is the total 
number of bits needed to transmit the sequence X 
divided by N. (From now on we omit the reference 
to f.) Let N. be the number of occurrences of a sym- 
bol a in X. Then we have 

THEOREM 1. 

PROOF. 
Let t l ,  t z ,  . . . , tN .  be the times when the N,, occur- 
rences of the symbol a are sent. That is, xti = a and 
ti < t i+].  When a occurs at time tl its position in the 
list is at most t l .  Furthermore, when a occurs at time 
ti for i > 1 its position is at most ti - ti-1. Therefore 
the cost of transmitting the first a is at most f(tl), and 
the cost of transmitting the ith u is at most / ( t i  - ti-]). 

If we let R,(X) be the total number of bits used to 
transmit the N, occurrences of symbol a then 

” 

i-2 
Rz(X) 5 f(t1) + C f ( t i  - ti-1). 

Noting the concavity off and applying Jensen’s 

(7) 
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inequality' we get per symbol used by this code on the sequence X .  A 
well known fact about an optimum static code is 

H * ( X )  C p&) 5 H * ( X )  1. (1 3) 

(See Gallager [9, ch. 31.) 
Substituting the left hand inequality into Corol- 

lary I gives us inequality (2) in Section 3, namely 

P M F ( X )  5 1 + P H W )  + 2 + PH(X)). 
This means that the move-to-front scheme at its 
worst performs almost as well as a static optimum 
code, even though it has no advance knowledge of 
the sequence. Moreover, the move-to-front scheme 
will do much better than the static optimum on cer- 
tain types of sequences. 

We can also evaluate the average performance of 
our scheme when compressing a sequence of sym- 
bols generated independently according to a fixed 
distribution. (This is called a discrete memoryless 
source.) 

THEOREM 2. 
If the symbols are generated by a discrete rnemoryless 
source in which Prob(xl = a )  = Pa, then w e  have 

The equality follows from the fact that the terms 
ti - ti-1 telescope, and the second inequality follows 
from the fact that f is monotonically increasing. 
Summing over all a c S and dividing by N gives 
Theorem 1. 0 

By combining Theorem 1 with a particular encod- 
ing scheme we can relate the efficiency of the move- 
to-front compression scheme on a particular se- 
quence to the value of the "empirical entropy" of the 
sequence. This entropy, H * ,  is defined as follows. 

Na Na C - - log - 
a s  N N H * ( X )  (9) 

COROLLARY 1. 

P M F ( X )  5 1 + H * ( X )  + 2 hg(I + H * ( X ) ) .  (10) 

PROOF. 
We use the function f appropriate for the second 
scheme: f (i) = 1 + log i + 2 log(1 + log i ) .  

Substituting this into Theorem 1 we get: 

The value of the first sum is 1. The second sum is 
just H * (X ). 

we can apply Jensen's inequality to the third sum- 
mation to bound it by 

Because log is a concave function and Z (Na/N) = 1 

The summation in (12) is just 1 + H * ( X ) .  Combining 
these results yields the corollary. 0 

We may now compare the performance of the 
move-to-front scheme with that of an optimum static 
prefix code for any particular sequence. One way of 
getting an optimum code for a particular sequence is 
to generate an optimum code for a source in which 
the probability of a symbol a occurring is Na/N, 
which is just a ,Huffman code for this probability 
distribution. Let ~ H ( X )  be the average number of bits 
* Jensen's inequality states that iffis  a concave function. lwiJ is a set of 
positive real weights whose sum is 1, and { p i )  is a set of points in the domain 
off. then Ziwif (pd s f (Z i  wipi) [Ill. 

where ( ) denotes expected value over all sequences of 
length N. 

PROOF. 
Taking expected values on both sides of Theorem 1, 
we have 

( PMFF 1 ) 

1151 

The next step is to pull f out of the inner summation 
using Jensen's inequality. To do this we must verify 
that 

i i (Y) Pi"' (1 - Pap-' = 1. 
i- 1 

This follows immediately from the observation that 

and the binomial theorem. 
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After applying Jensen's inequality we have 

(PMF(X)) 

by the binomial theorem and the monotonicity off. 

Note. Theorem 2 holds for all values of N z 1. 

Using Theorem 2 we can derive a corollary that 
bounds the expected performance of the move-to- 
front scheme in terms of the entropy of the source s. 
This is an expected-case version of Corollary 1. Let 
H(s)  denote the entropy of the source: 

0 

H(s)  2 - Palog Pa (1 7) 
a& 

COROLLARY 2. 

( P M F ( ~ ) )  5 1 + H(s)  + 2 lOg(1 + H(s)) ,  (18) 

where the average is taken over all sequences of length N .  

This follows from Theorem 2 in much the same 
way that Corollary 1 follows from Theorem 1. A 
substitution is made for f into Theorem 2, then the 
three summations are bounded using Jensen's in- 
equality. 

of the integer prefix codes. The bound achieved in 
each case is the same as the formula for f with an 
entropy replacing each log i .  In particular, we can 
derive inequality (1) in Section 3 for the simplest 
code. 

We can use Corollary 2 to prove Shannon's source 
coding theorem (see Gallager [9]). This theorem says 
that the number of bits per symbol needed to trans- 
mit the information from a discrete memoryless 
source can be made as close as desired to the en- 
tropy of the source. Let X be a sequence generated 
by a discrete memoryless source s. By grouping the 
symbols of X in blocks of size k and using the move- 
to-front scheme of Corollary 2 on these blocks, the 
average number of bits per block used is bounded by 
1 + H(s9  + 2 log(1 + H(sS) ,  where H ( s 9  = kH(s) is 
the entropy of the block source sk. Hence the aver- 
age number of bits per symbol of X is bounded above 
by l / k  + H(s)  + (2/k)log(l + kH(s)). As k goes to 

Corollaries similar to 1 and 2 can be proven for all 

infinity this number approaches the entropy of the 
source, proving the theorem. 

scheme is very similar to that of the move-to-front 
scheme. Assume that an item is moved to the front 
every 7th appearance. Recall that there are I S I = n 
symbols. 

THEOREM 3. 

The performance of the intermittent move-to-front 

PROOF. 
Let t l ,  tz ,  . . . , tN, be the times when symbol a occurs 
in the sequence. For 1 I i < Nu, let yi be the number 
of times move-to-front is applied between times ti 
and f i+ l  (exclusive). The position of the symbol a at 
time t i ,  i > 7 ,  is at most 1 + z& yj.  The position of 
a at times t l ,  t z ,  . . . , f ,  is at most n. Therefore the 
total number of bits used to transmit the Np occur- 
rences of symbol a is 

The sum of the yj's is at most (N - Na)/T, and each yj 
is counted at most 7 times. Hence 

By Jensen's inequality and the concavity of the func- 
tion f, we have 

Summing over all atS and dividing by N gives the 
theorem. 0 

Using the function f for the second integer coding 
scheme, we obtain 

(23) + 2 log(1 + H*(X)) + 0 - . ti) 
The last term is negligible for long sequences. 

THEOREM 4. 
If the symbols are generated by a discrete memoryless 
source in which Prob(xl = a )  = Pa, then 

Similarly, we can prove 

where c = r n / N .  

A direct consequence of Theorem 4 and the sec- 
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ond integer coding scheme is 

(PIMF(X)) 5 1 + H(s)  
1251 
. I  + 2 log(1 + H(s)) + O ( m / N )  

where H(s)  is the entropy of the discrete memoryless 
source s. 
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