

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

(26 - Graphen)

Prof. Dr. Susanne Albers

Motivation

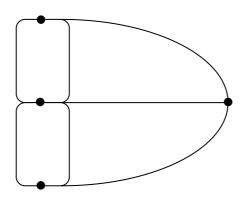
Wie komme ich am besten von Freiburg nach Ulm?

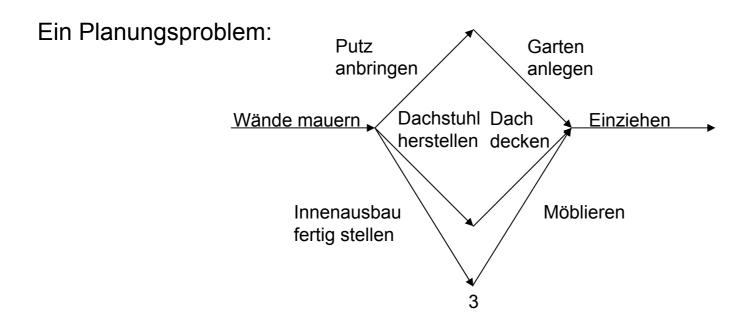
Pregel

- Was ist die k\u00fcrzeste Rundreise durch eine gegebene Menge von St\u00e4dten?
- Welche Menge an Wasser kann die Kanalisation von Freiburg maximal verkraften?
- Gibt es einen Rundweg über die Brücken von Königsberg (Kaliningrad) derart, dass jede Brücke nur einmal überquert wird und man zum Ausgangspunkt zurückgelangt?
- Diese und viele andere Probleme lassen sich als Graphenprobleme definieren.

Repräsentation von Problemen durch Graphen

Das Königsberger Brückenproblem:





Definition von Graphen

Definition: Ein *gerichteter Graph G* = (V,E) (englisch: *digraph*) besteht aus einer Menge V = {1, 2, . . . , |V|} von *Knoten* (englisch: *vertices*) und einer Menge $E \subseteq V \times V$ von *Pfeilen* oder *Kanten* (englisch: *edges, arcs*). Ein Paar (v,v') $\in E$ heißt *Pfeil* oder *Kante von v nach v'*.

Darstellung:

- Knoten werden durch Punkte dargestellt und
- Kanten bzw. Pfeile werden durch Verbindungslinien mit Pfeilspitze auf den Endknoten dargestellt.

Einschränkung: Endliche Graphen, d.h. $|V| < \infty$

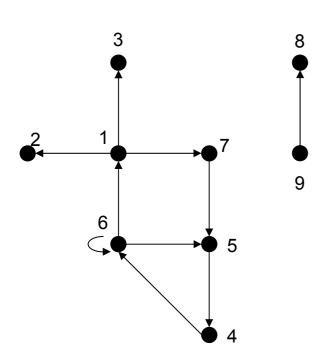
Adjazenzmatrizen

- Adjazenzmatrizen dienen der Speicherung von Graphen.
- Ein Graph G = (V, E) wird in einer Boole'schen $|V| \times |V|$ -Matrix $A_G = (a_{ij})$, mit $1 \le i \le |V|$, $1 \le j \le |V|$ gespeichert, wobei

$$a_{ij} = \begin{cases} 0 & falls \ (i,j) \notin E; \\ 1 & falls \ (i,j) \in E; \end{cases}$$

```
class graph{
    graph(int n) {
        this.numberOfNodes = n;
        this.a = new boolean[n][n];
    }
    private int numberOfNodes;
    private boolean[][] a;
}
```

Beispiel einer Adjazenzmatrix



	1	2	3	4	5	6	7	8	9
1	0	1	1	0	0	0	1	0	0
2	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	1	0	0	0
5	0	0	0	1	0	0	0	0	0
6	1	0	0	0	1	1	0	0	0
7	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	1	0

Eigenschaften von Adjazenzmatrizen

- Bei der Speicherung eines Graphen mit Knotenmenge V in einer Adjazenzmatrix ergibt sich ein Speicherbedarf von Θ(|V|²).
- Dieser Speicherbedarf ist nicht abhängig von der Anzahl der Kanten im Graphen.
- Demnach sind Adjazenzmatrizen ungünstig, wenn der Graph vergleichsweise wenige Kanten enthält.
- Wegen der erforderlichen Initialisierung der Matrix oder der Berücksichtigung aller Einträge der Matrix benötigen die meisten Algorithmen Ω(|V|²) Rechenschritte.

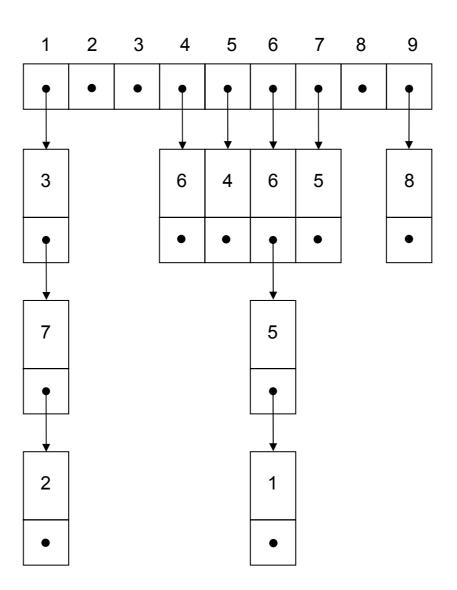
Adjazenzlisten

- Bei Adjazenzlisten wird für jeden Knoten eine lineare, verkettete Liste der von diesem Knoten ausgehenden Kanten gespeichert.
- Die Knoten werden als lineares Feld von |V| Anfangszeigern auf je eine solche Liste verwaltet.
- Die *i*-te Liste enthält ein Listenelement mit Eintrag j für jeden Endknoten eines Pfeils $(i, j) \in E$.
- Adjazenzlisten unterstützen viele Operationen, z.B. das Verfolgen von Pfeilen in Graphen, sehr gut.
- Andere Operationen dagegen werden nur schlecht unterstützt, insbesondere das Hinzufügen und Entfernen von Knoten.

Implementierung von Adjazenzlisten


```
class graphAL{
    graphAL(int n){
        this.numberOfNodes = n;
        this.edgeTo = new edge[n];
   private int numberOfNodes;
   private edge[] edgeTo;
class edge {
    edge(int node, edge next){
        this.node = node;
        this.next = next;
    int node;
    edge next;
```

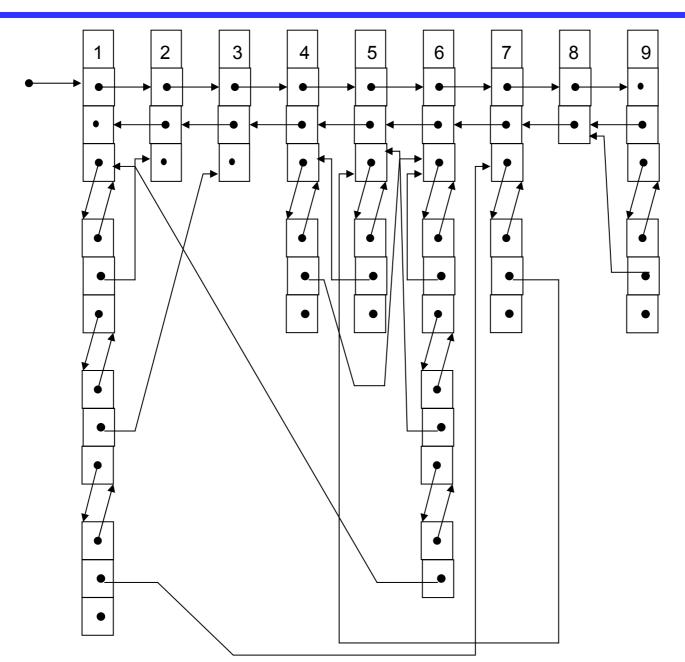
Ein Beispiel



Doppelt verkettete Kantenliste

- Die bei Adjazenzlisten fehlende Dynamik kann erreicht werden, indem man die Knoten in einer doppelt verketteten Liste speichert, anstatt sie in einem Feld fester Größe zu verwalten.
- Jedes Listenelement dieser Liste enthält drei Verweise, zwei davon auf benachbarte Listenelemente und einen auf eine Kantenliste, wie bei Adjazenzlisten.
- Jede Kantenliste ist doppelt verkettet; statt einer Knotennummer besitzt jedes Kantenlistenelement einen Verweis auf ein Element der Knotenliste.

Doppelt verkettete Kantenliste am Beispiel



Durchlaufen von Graphen

- Für manche Probleme ist es wichtig, Graphen vollständig zu traversieren, d.h. alle Knoten eines Graphen zu betrachten.
- Fasst man die Web-Seiten im Internet als Knoten und die Links auf diesen Seiten als Kanten auf, so muss man beim Suchen nach einem bestimmten Schlüsselwort alle Knoten dieses Web-Seiten-Graphen inspizieren.
- Das Betrachten oder Inspizieren eines Knotens in einem Graphen nennt man auch oft Besuchen des Knotens.
- Manchmal ist es wichtig die Knoten nach einer gewissen Systematik zu besuchen.
- Wir werden im Folgenden die Tiefensuche und die Breitensuche als zwei Spezialfälle eines allgemeinen Knotenbesuchsalgorithmus kennen lernen.

Ein allgemeines Schema für das Traversieren

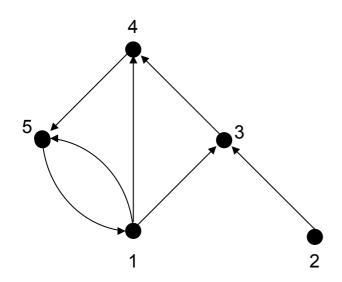
- Im Gegensatz zu Bäumen kann es bei Graphen Zyklen geben.
- Deswegen kann es beim Traversieren passieren, dass wir bei einem schon einmal besuchten Knoten ankommen.
- Aus diesem Grund müssen wir uns die bereits besuchten Knoten in einer Tabelle merken, um Endlosschleifen zu vermeiden.
- Da jeder Knoten mehrere Nachfolger haben kann, müssen wir darüber hinaus eine Datenstruktur verwenden, in der wie die noch zu besuchenden Knoten ablegen.

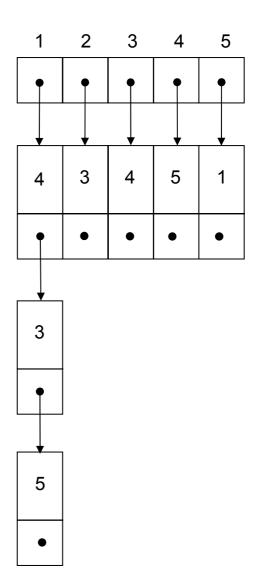
Allgemeiner Knotenbesuchsalgorithmus für einen Graphen G = (V,E)

Konkrete Traversierungsverfahren

- Die Reihenfolge, in der die Knoten ausgegeben werden, hängt offensichtlich von der Datenstruktur für den Rand ab, d. h. der Art, wie die Knoten darin abgelegt werden.
- Verwendet man für die Knotenliste einen Stack, so ergibt sich ein Tiefendurchlauf durch den Graphen.
- Verwendet man hingegen eine Queue, so entspricht das Verhalten einem Breitendurchlauf.

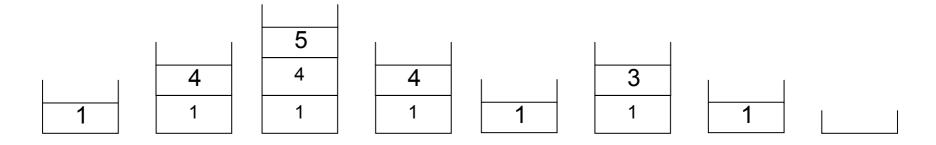
Beispiel



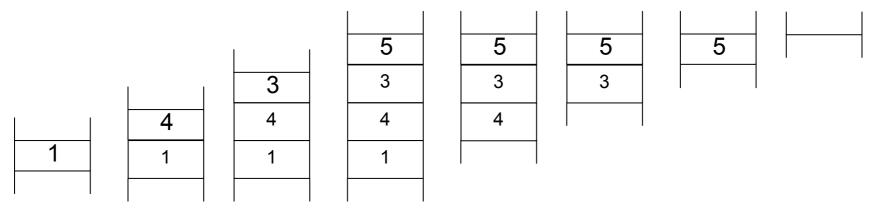


Breiten- und Tiefendurchlauf

Durchlauf ab Knoten 1 mit Stack (Ausgabe: $1 \rightarrow 4 \rightarrow 5 \rightarrow 3$):



Durchlauf ab Knoten 1 mit Queue (Ausgabe: $1 \rightarrow 4 \rightarrow 3 \rightarrow 5$):



Tiefendurchlauf: DFS mit Stapel

Formulierung des Tiefendurchlaufs mit Hilfe eines Stapels S: DFS(s): Initialisiere S als Stapel mit einzigem Element s; while $S \neq \emptyset$ do {Nehme oberstes Element u von S herunter; if besucht(u) = false then { setze besucht(u) = true; for each Kante (u, v), die von u ausgeht do stapele v auf S } } /* end while

Tiefendurchlauf: DFS rekursiv

Rekursive Formulierung des Tiefendurchlaufs:

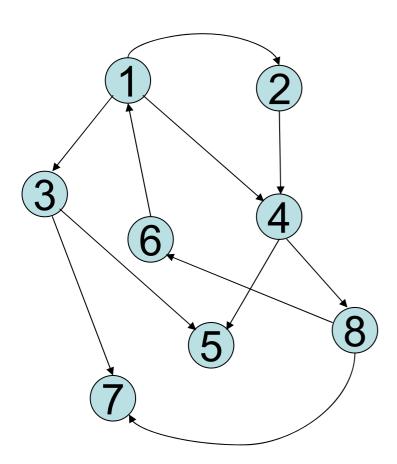
DFS(v):

Markiere v als "besucht";

for each jede von v ausgehende Kante (v, v') do:

if v' ist nicht "besucht" then DFS(v')

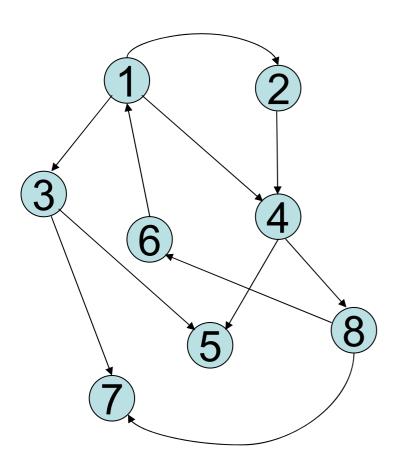
Beispiel



Breitendurchlauf: BFS mit Schlange Q


```
BFS(s):
    Setze besucht(s) = true und für alle anderen Knoten v setze besucht(v) = false;
    Setze Q = \{s\};
    Initialisiere aktuellen BFS-Baum T = \emptyset;
    while Q \neq \emptyset do
          {entferne erstes Element u von Q;
           betrachte jede von u ausgehende Kante (u, v):
                     if besucht(v) = false then {setze besucht(v) = true;
                                                   füge Kante (u, v) zum BFS-Baum T hinzu;
                                                   füge v am Ende von Q ein}
          } */ end while
```

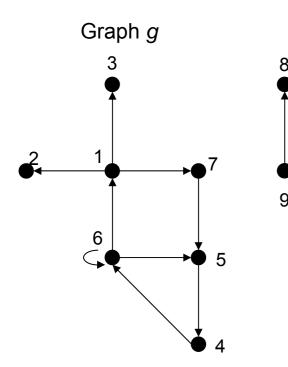
Beispiel



Kürzeste Wege in ungewichteten Graphen

Definition: Das **Single-Source-Shortest-Path-Problem** besteht darin, für einen Graph G = (V, E) und einen Knoten $v \in V$ die kürzesten Pfade von v zu allen anderen Knoten in G zu bestimmen.

Beispiel:



Kürzeste Pfade ausgehend von Knoten 1

$$1 \rightarrow 2$$

$$1 \rightarrow 3$$

$$1 \rightarrow 7$$

$$1 \rightarrow 7 \rightarrow 5$$

$$1 \rightarrow 7 \rightarrow 5 \rightarrow 4$$

$$1 \rightarrow 7 \rightarrow 5 \rightarrow 4 \rightarrow 6$$

Lösung des Single-Source-Shortest-Path-Problems

- Der Knoten v ist von sich selbst genau 0 Schritte weit entfernt.
- Die Nachbarn von v sind genau 1 Schritt entfernt.
- Die Knoten der Entfernung j sind alle Knoten, die von den j -1
 Schritt entfernten in genau einem Schritt erreicht werden können.
- Also können wir dieses Problem durch einen Breitendurchlauf lösen.
- Anstelle der Besucht-Markierungen verwenden wir jedoch ein Feld distance, um den Abstand der einzelnen Knoten abzulegen.
- Dabei ist |V| 1 die Maximaldistanz eines Knoten von v.
- Damit ist die Komplexität bei Verwendung von Adjazenzlisten O(|V| + |E|).

Lösung des Single-Source-Shortest-Path-Problems


```
public void sssp(int node){
    NodeListOueued 1 = new NodeListOueued();
    int[] distance = new int[this.numberOfNodes];
    for (int i = 0; i < this.numberOfNodes; i++)
        distance[i] = this.numberOfNodes;
    1.addElement(new Integer(node));
    distance[node] = 0;
    while (!l.isEmpty()){
        int i = ((Integer) l.firstElement()).intValue();
        1.removeFirstElement();
        Enumeration enum = this.successors(i);
        while (enum.hasMoreElements()) {
            int j = (Integer enum.nextElement()).intValue();
            if (i != j && distance[j]==this.numberOfNodes){
                1.addElement(new Integer(j));
                distance[j] = distance[i]+1;
    } // Hier noch Ausgabe einfügen
```

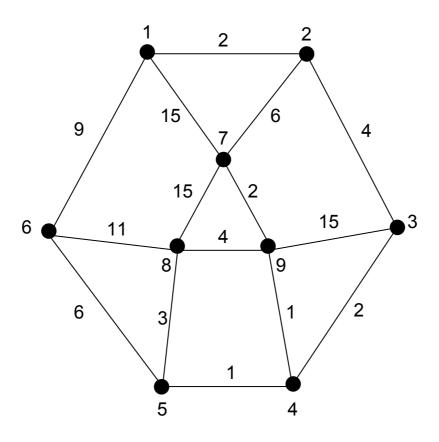
Berechnung der Kürzesten Wege

- Sind die Distanzen gegeben, kann man für einen beliebigen v´Knoten sehr einfach den kürzesten Weg zu dem Ausgangsknoten v berechnen.
- Hierzu gehen wir von v' einfach zu dem Knoten v'' mit $(v^{''},v^{'}) \in E$, der den geringsten Abstand zu v hat.
- Dann bestimmen wir den kürzesten Weg von v´´ zu v.
- Sind wir bei v angelangt, so stoppen wir.
- So erhalten wir rückwärts den kürzesten Pfad von v nach v ´.

Gewichtete Graphen

- Gewichtete Graphen unterscheiden sich von ungewichteten dadurch, dass jede Kante mit einer reellen Zahl bewertet ist.
- Diese Gewichte werden als Distanzen oder Kosten für das Traversieren interpretiert.
- Wir setzen im Folgenden voraus, dass diese Gewichte nicht negativ sind,
 d. h., dass es eine Abbildung c: E → R⁰₊ gibt, die jeder Kante ein nicht-negatives Gewicht zuordnet.
- Das Problem, für einen Knoten die kürzesten Wege zu allen anderen Knoten zu berechnen wird dadurch schwieriger.
- Allerdings lassen sich die Grundideen aus dem ungewichteten Fall übernehmen.

Beispiel für einen gewichteten Graphen



Dijkstra's Algorithmus

Optimalitätsprinzip:

Für jeden kürzesten Weg $p = (v_0, v_1, \dots, v_k)$ von v_0 nach v_k ist jeder Teilweg $p' = (v_i, \dots, v_j)$, $0 \le i < j \le k$ ein kürzester Weg von v_i nach v_i .

Begründung:

- 1. Wäre dies nicht so, gäbe es also einen kürzeren Weg p'' von v_i nach v_j , so könnte auch in p der Teilweg p' durch p'' ersetzt werden und der entstehende Weg von v_0 nach v_k wäre kürzer als p.
- 2. Dies ist aber ein Widerspruch zu der Annahme, dass p ein kürzester Weg von v_0 nach v_k ist.

Folgerung (1)

Damit können wir länger werdende kürzeste Wege durch Hinzunahme einzelner Kanten zu bereits bekannten kürzesten Wegen mit folgender Invariante berechnen:

1. Für alle kürzesten Wege *sp*(*s, v*) und Kanten (*v, v*) gilt:

$$c(sp(s, v)) \leq c(sp(s, v)) + c((v, v))$$

2. Für wenigstens einen kürzesten Weg sp(s, v) und eine Kante (v, v) gilt:

$$c(sp(s, v)) = c(sp(s, v)) + c((v, v))$$

Folgerung (2)

- Sei p = (v_0, v_1, \dots, v_k) ein Weg von v_0 nach v_k ist.
- Sei p''ein kürzerer Weg von v_i nach v_i als der entsprechende Teilweg in p.
- Dann können wir in p den Teilweg von v_i nach v_j durch p' ersetzen, um einen kürzeren Weg p' von v_0 nach v_k zu erhalten.

Idee des Verfahrens von Dijkstra

- Anfangs ist die Entfernung d(v) aller von s verschiedener Knoten ∞ .
- Die Entfernung von s von sich selbst ist natürlich 0.
- Wir betrachten eine Menge PQ von Knoten-Entfernungs-Paaren (v, d(v)), die wir mit {(s; 0)} initialisieren.
- Dann wird PQ nach dem Prinzip "Knoten mit kürzester Distanz von s zuerst" schrittweise bearbeitet, bis PQ leer ist:
 - 1. Entferne Knoten v aus PQ mit minimaler Distanz d(v) von s, d(v) ist der kürzeste Distanz von s nach v.
 - 2. Für jeden Knoten $w \in V$ mit $(v, w) \in E$ verfahre wie folgt:
 - (a) Falls $(w, d(w)) \in PQ$, ersetze (w, d(w)) durch $(w, min\{d(w); d(v) + c(v, w)\})$.
 - (b) Falls w nicht in PQ enthalten ist, füge (w, (d(v) + c(v, w))) in PQ ein.

Benötigte Datenstrukturen

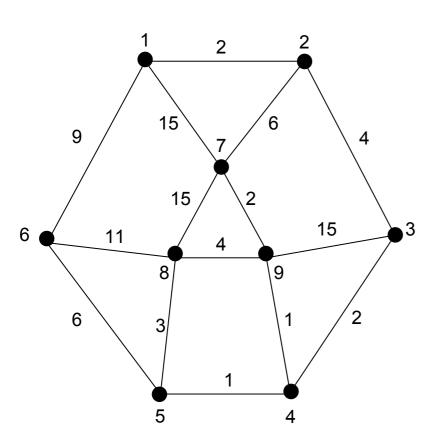
- Wir merken uns für jeden Knoten v die bisher berechnete, vorläufige *Entfernung d(v)* zum Anfangsknoten s.
- Weiter speichern wir den Vorgänger von v auf dem bisher berechneten vorläufig kürzesten Weg.
- Weiter benötigen wir eine Datenstruktur, um die noch zu bearbeitenden Knoten zu speichern. Dazu verwenden wir eine Priority Queue.

Priority Queues (Vorrangwarteschlangen)

Als Priority Queue bezeichnet man eine Datenstruktur zur Speicherung einer Menge von Elementen, für die eine Ordnung (Prioritätsordnung) definiert ist, so dass folgende Operationen ausführbar sind:

- Initialisieren (der leeren Struktur),
- Einfügen eines Elementes,
- Minimum suchen,
- Minimum entfernen,
- Herabsetzen der Priorität eines Schlüssels.

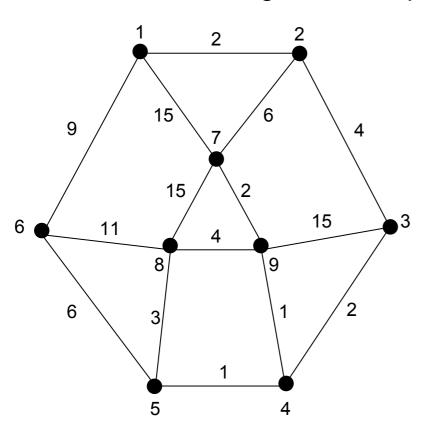
Ein Beispiel



Startknoten: 1.

Ablauf des Verfahrens

Eintrag in PQ entspricht (Nr., Entfernung, Vorgänger):



Implementierungen von Priority Queues

- Offensichtlich hängt die Rechenzeit von Dijkstra's Algorithmus von der Implementierung der Priority Queue ab.
- Wenn wir eine lineare Liste zur Speicherung der Priority Queue PQ verwenden, so benötigen einzelne Operationen, wie z.B. das Auffinden des Minimums das Einfügen oder das Herabsetzen der Priorität O(|V|) Schritte.
- Auch wenn wir die Elemente in der Liste sortieren, benötigen wir noch Linearzeit für das Herabsetzen der Priorität.
- Da wir O(|V|) Schleifendurchläufe auszuführen haben, ist der Gesamtaufwand O(|V|²).
- Eine bessere Datenstruktur für Dijkstra's Algorithmus ist ein so genannter Fibonacci-Heap.
- Damit erreicht man eine Gesamtlaufzeit von O(|E| + |V| log |V|).