
Combinatorial Optimization
Lecture Notes, Summer Term 08

University of Freiburg

Alexander Souza

Contents

1 Introduction 4
1.1 Examples . 4
1.2 Combinatorial Optimization Problems . 5
1.3 Algorithms and Approximation . 5
1.4 Basic Graph Theory . 6

I Optimization Algorithms 8

2 Linear Programming 9
2.1 Introduction . 9
2.2 Polyhedra . 11
2.3 Simplex Algorithm . 14
2.4 Duality . 19

3 Network Flows 23
3.1 Maximum Flows and Minimum Cuts . 23
3.2 Edmonds-Karp Algorithm . 26
3.3 Minimum Cost Flows . 27
3.4 Assignment Problem . 29

II Approximation Algorithms 31

4 Knapsack 32
4.1 Fractional Knapsack and Greedy . 33
4.2 Pseudo-Polynomial Time Algorithm . 34
4.3 Fully Polynomial-Time Approximation Scheme 36

5 Set Cover 38
5.1 Greedy Algorithm . 39
5.2 Primal-Dual Algorithm . 42
5.3 LP-Rounding Algorithms . 44

6 Satisfiability 48
6.1 Randomized Algorithm . 49
6.2 Derandomization . 51

2

7 Facility Location 53
7.1 Complementary Slackness . 54
7.2 Primal-Dual Algorithm . 55

3

Chapter 1

Introduction

1.1 Examples

We start with two examples of combinatorial optimization problems.

Example 1.1. We are given an amount of C Euro and wish to invest it among a set of
n options. Each such option i has cost ci and profit pi. The goal is to maximize the total
profit.

Consider C = 100 and the following cost-profit table:

Option Cost Profit
1 100 150
2 1 2
3 50 55
4 50 100

Our choice of purchased options must not exceed our capital C. Thus the feasible solutions
are {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}. Which is the best solution? We evaluate all
possibilities and find that {3, 4} give 155 altogether which maximizes our profit.

Example 1.2. We have a set of n jobs that need to be done and each job j has a processing
time pj . Each job can be worked on by a subset of our m employees. For each job j we
introduce a set Sj of the employees that are eligible to work on that particular job. The
following diagramm visualizes the sets Sj : for each job j (on the left hand side) we see
which employee (on the right hand side) is able to work on that job.

1

2

3

4

1

2

3

Employee iJob j

Several employees can contribute to the same job at the same time and each employee
can contribute to several jobs (but not at the same time). The goal is to get all the jobs

4

done as early as possible. We can formulate our problem with the following mathematical
program. We use the variables xij that tell us for how long employee i works on job j. We
wish to minimize the longest duration some employee is busy.

minimize max
i

∑
j

xij “minimize longest duration”

subject to
∑
i∈Sj

xij = pj j = 1, . . . , n “each job gets done”

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n “non-negative contributions”

We will learn soon how to solve such a mathematical program.

1.2 Combinatorial Optimization Problems

An instance of a combinatorial optimization problem (COP) can formally be defined as a
tuple I = (U,P, S, val, extr) with the following meaning:

U the solution space (on which val and S are defined),
P the feasibility predicate,
S the set of feasible solutions: S = {X ∈ U : X satisfies P},
val the objective function val : U → R,
extr the extremum (usually max or min).

Our goal is to find a feasible solution where the desired extremum of val is attained. Any
such solution is called an optimum solution, or simply an optimum. U and S are usually
not given explicitly, but implicitly (S through the feasibility predicate P).

Let us formulate the problem in Example 1.1 in this manner.

U = 2{1,2,3,4},

P = “total cost is at most C”, i.e., X ∈ S if
∑
i∈X

ci ≤ C

S = {{1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}},

val =

{
U → R
X 7→

∑
i∈X pi,

extr = max .

The optimum solution here is {3, 4} with value 155.
A central problem around combinatorial optimization is that it is often in principle

possible to find an optimum solution by enumerating the set of feasible solutions, but
this set mostly contains too many elements. This phenomenon is called combinatorial
explosion.

1.3 Algorithms and Approximation

Many problems in combinatorial optimization can be solved by using an appropriate algo-
rithm. Informally, an algorithm is given a (valid) input, i.e., a description of an instance
of a problem and computes a solution after a finite number of “elementary steps”. The
number of bits used to describe an input x is called the (binary) length or size of the input
and denoted size(x).

5

Let t : N → R be a function. We say that an algorithm runs in time O (t) if there is
a constant α such that the algorithm uses at most αt(size(x)) many elementary steps to
compute a solution given any input x. An algorithm is called polynomoial time if t : n 7→ nc

for some constant c. This contrasts exponential time algorithms where t : n 7→ cn for some
constant c > 1.

Because the running times of exponential time algorithms grow rather rapidly as the
input size grows, we are mostly interested in polynomial time algorithms. Of course, we
desire to find an optimum solution for any given COP in polynomial time. Unfortunately
this is not always possible as many COPs are NP-hard. (It is widely believed that no poly-
nomial time algorithm exists that solves some NP-hard COP optimally on every instance.)
Thus our goal is a find “good” solutions in polynomial time.

Let Π = {I1, I2, . . . } be a set of instances of a COP, where each I ∈ Π is of the form
I = (U,P, S, val, extr). For any I ∈ Π, let opt(I) = extrX∈S(I)val(X) denote the respective
optimum value. An approximation algorithm alg for Π is a polynomial time algorithm
that computes some solution X ∈ S(I) for every instance I ∈ Π. The respective value
obtained is denoted alg(I) = val(X). The approximation ratio of alg on an instance I
is defined by

ρalg(I) =
alg(I)
opt(I)

.

The algorithm alg is a ρ-approximation algorithm if

ρalg(I) ≤ ρ for all I ∈ Π and extr = min,

ρalg(I) ≥ ρ for all I ∈ Π and extr = max.

1.4 Basic Graph Theory

Graphs often help us to model COPs in a simple and natural manner. For instance, the
diagram in Example 1.2 is a graph.

An undirected graph G = (V,E) consists of a vertex set V = V (G), an edge set
E = E(G), and a relation Ψ, called incidence, that assigns to each edge e ∈ E exactly
two (not necessarily distinct) vertices u, v ∈ V . We write e = uv for short. The vertices u
and v are called the endvertices of e = uv. We say that e joins u and v, where v is the
head and u the tail of the edge. We will also use the terms that u and v are neighbors
and adjacent. A loop is an edge whose endvertices are equal. A multiedge is a set of edges
that have the same respective endvertices. A graph without loops and multiedges is called
simple.

Example 1.3. The vertex set of the graph G below is V = {v1, v2, v3, v4}, the edge set
is E = {e1, e2, e3, e4, e5}, and the incidence relation is Ψ = {e1 = v1v2, e2 = v1v4, e3 =
v3v3, e4 = v2v3, e5 = v2v3}.

v1

v2

v3

v4

e3

e5

e4

e1 e2
G

The graph G is not simple because it contains the loop e3 and the multiedge {e4, e5}.

6

The number of edges incident with a vertex v is called its degree and denoted deg(v);
loops count twice. A vertex with degree zero is isolated.

Example 1.4. In the graph G below vertex x is isolated, i.e., deg(x) = 0. For the others
we have deg(u) = 3, deg(v) = 3, and deg(w) = 2.

w

v

u

x

We usually interpret Ψ so that the edges do not have directions, i.e., for an edge
e = uv, we can reach vertex u from v and vice versa (hence the name undirected graph).
Sometimes it is useful when edges have directions; then they are called arcs. For an arc
e = uv, vertex v can be reached from u but not vice versa. Such graphs are called directed
graphs (digraphs) and denoted G = (V,A).

A series of vertices v1, v2, . . . , vk is called a trail if vivi+1 ∈ E for i = 1, . . . , k. If v1 6= vk

then the trail is open, or a path. Otherwise, i.e., v1 = vk, the trail is closed, or a cycle. If
a trail v1, v2, . . . , vk satisfies that vi 6= vj for i 6= j, then the trail is called simple.

Two vertices u, v are connected if there exists a path between u and v. The equivalence
classes of the relation “are connected” are called the connected components of G.

7

Part I

Optimization Algorithms

8

Chapter 2

Linear Programming

Linear programs (LP) play an important role in the theory and practice of optimization
problems. Many COPs can directly be formulated as LPs. Furthermore, LPs are invaluable
for the design and analysis of approximation algorithms. Generally speaking, LPs are
COPs with linear objective function and linear constraints, where the variables are defined
on a continous domain. We will be more specific below.

2.1 Introduction

We begin our treatment of linear programming with an example of a transportation prob-
lem to illustrate how LPs can be used to formulate optimization problems.

Example 2.1. There are two brickworks w1, w2 and three construction sites s1, s2, s3.
The works produce b1 = 60 and b2 = 30 tons of bricks per day. The sites require c1 = 30,
c2 = 20 and c3 = 40 tons of bricks per day. The transportation costs tij per ton from work
wi to site sj are given in the following table:

tij s1 s2 s3

w1 40 75 50
w2 20 50 40

Which work delivers which site in order to minimize the total transportation cost? Let us
write the problem as a mathematical program. We use variables xij that tell us how much
we deliver from work wi to site sj .

minimize 40x11 + 75x12 + 50x13 + 20x21 + 50x22 + 40x23

subject to x11 + x12 + x13 ≤ 60
x21 + x22 + x23 ≤ 30
x11 + x21 = 30
x12 + x21 = 20
x13 + x23 = 40
xij ≥ 0 i = 1, 2, j = 1, 2, 3.

How do we find the best xij?

This question will be the subject of this chapter. The general linear programming
problem reads as follows:

9

Problem 2.1 Linear Programming

Instance. Matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn.

Task. Solve the problem

maximze c>x,

subject to Ax ≤ b,

x ∈ Rn.

That means solve one of the following questions.

(1) Find a vector x ∈ Rn such that Ax ≤ b and val(x) = c>x is maximum, or

(2) decide that the set S = {x ∈ Rn : Ax ≤ b} is empty, or

(3) decide that for all α ∈ R there is an x ∈ Rn with Ax ≤ b and c>x > α.

As a shorthand we shall frequently write max{c>x : Ax ≤ b}. We can assume that
we deal with a maximization problem without loss of generality because we can treat a
minimization problem if we replace c with −c.

The function val(x) = c>x is the objective function. A feasible x∗ which maximizes val
is an optimum solution and the value z∗ = val(x∗) is called optimum value. Any x ∈ Rn

that satisfies Ax ≤ b is called feasible. The set S = {x ∈ Rn : Ax ≤ b} is called the feasible
region, i.e., the set of feasible solutions. If S is empty, then the problem is infeasible. If
for every α ∈ R, there is a feasible x such that c>x > α then the problem is unbounded.
This simply means that the maximum of the objective function does not exist.

Basic Ideas for Solving Linear Programming

Here we illustrate the main ideas for solving linear programming. A lot of the intuition
for the general case can already be obtained when we restrict ourselves to LPs with only
two variables. Our working example for this introduction will be the following:

maximize x1 + x2 (2.1)
subject to 4x1 − x2 ≤ 8 (2.2)

2x1 + x2 ≤ 10 (2.3)
− 5x1 + 2x2 ≤ 2 (2.4)
x1 ≥ 0 (2.5)
x2 ≥ 0 (2.6)

Each setting of x1, x2 such that (2.2)–(2.6) are satisfied simultaneously is feasible.
Their set is the feasible region S and is the intersection of linear half planes. In Figure 2.1,
the gray shaded regions are excluded from the feasible region by the respective constraints;
S is what “is left” and drawn in green.

Our objective function is val(x1, x2) = x1 + x2. How do we find an optimum solu-
tion? We can not even evaluate this function for every feasible solution because these are
infinitely many. However, in two dimensions we can optimize as follows. We search the
largest value z (for example with binary search) such that the line x1 + x2 = z has an

10

intersection with S. In the example this is x1 + x2 = 8 with unique feasible (optimum)
solution (x1, x2) = (2, 6). See Figure 2.2 for a visualization.

Unfortunately, this approach does not quite work when we have more than two vari-
ables. Here we explain the ideas for of an algorithm that works for general LPs.

Observe that the optimum solution (x1, x2) = (2, 6) is one of the “corners” of the
feasible region in Figure 2.1. We will see later that this also holds for general LPs: If the
LP is bounded and feasible, there is always a “corner” with optimum objective value. This
suggests the following algorithm, called Simplex: Start with an arbitary “corner”. If the
current one is not optimal find a neighboring one so that the objective function improves.
Progress in this manner from “corner” to “corner” until an optimum solution is found.
The procedure can be seen in Figure 2.3.

2.2 Polyhedra

Recall that a point x ∈ Rn is feasible if it satisfies certain linear inequalities simultaneously.
So the feasible region is the intersection of finitely many halfspaces. More precisely:

A polyhedron in Rn is a set P = {x ∈ Rn : Ax ≤ b} for some matrix A ∈ Rm×n and
some vector b ∈ Rm. A bounded polyhedron is called polytope.

We denote by rank(M) the rank of a matrix M ∈ Rm×n, i.e., the number of linear
independent columns of M . The dimension of any non-empty set X ⊆ Rn is defined to be

dim(X) = n−max{rank(M) : M is a n× n matrix with Mx = My for all x, y ∈ X}.

A polyhedron P ⊆ Rn is full-dimensional if dim(P) = n. A polyhedron is full-dimensional
if and only if there is a point in its interior, i.e., if there are no implicit equalities in the
system Ax ≤ b.

Let P = {x : Ax ≤ b} be a non-empty polyhedron with dimension d. Let c be a vector
for which δ := max{c>x : x ∈ P} < ∞, then Hc = {x : c>x = δ} is called supporting
hyperplane of P . A face of P is the intersection of P with a supporting hyperplane of P .
Three types of faces are particular important, see Figure 2.4:

(1) A facet is a face of dimension d− 1,

(2) a vertex is a face of dimension zero (a point), and

(3) an edge is a face of dimension one (a line segment).

The following lemma (whose proof is an exercise) essentially states that a set F ⊆ P
is a face of a polyhedron P if and only if some of the inequalities of Ax ≤ b are satisfied
with equality for all elements of F .

Lemma 2.2. Let P = {x : Ax ≤ b} be a polyhedron and F ⊆ P . Then the following
statements are equivalent:

(1) F is a face of P .

(2) There is a vector c with δ := max{c>x : x ∈ P} < ∞ and F = {x ∈ P : c>x = δ}.

(3) F = {x ∈ P : A′x = b′} 6= ∅ for some subsystem A′x ≤ b′ of Ax ≤ b.

As important corollaries we have:

11

x2

x1

(3)

(2)

(4)

S

(5)

(1) objective function

(6)

Figure 2.1: Visualization of the above LP.

x2

S

x1

Figure 2.2: Searching the optimum: the direct way.

12

x2

S

x1

Figure 2.3: Searching the optimum: the Simplex way.

Corollary 2.3. If max{c>x : x ∈ P} < ∞ for a non-empty polyhedron P and a vector c,
then the set of points where the maximum is attained is a face of P .

Corollary 2.4. Let P be a polyhedron and F a face of P . Then F is again a polyhedron.
Furthermore, a set F ′ ⊆ F is a face of P if and only if it is a face of F .

An inequality c>x ≤ δ is facet-defining for P if c>x ≤ δ for all x ∈ P and {x ∈ P :
c>x = δ} is a facet of P .

Lemma 2.5. Let P ⊆ {x ∈ Rn : Ax = b} be a non-empty polyhedron of dimension
n − rank(A). Let A′x ≤ b′ be a minimal inequality system such that P = {x : Ax =
b, A′x ≤ b′}. Then each inequality of A′x ≤ b′ is facet-defining for P , and each facet of P
is defined by an inequality of A′x ≤ b′.

Proof. If P = {x ∈ Rn : Ax = b}, then there are no facets and the statement is trivial.
Thus P ⊂ {x ∈ Rn : Ax = b}. So let A′x ≤ b′ be a minimal inequality system such that
P = {x ∈ Rn : Ax = b, A′x ≤ b}, let a>x ≤ β be one of its inequalities, A′′x ≤ b′′ be the
rest of the system A′x ≤ b′. Pick a vector y with Ay = b, A′′y ≤ b and a>y > β (which
must exist because the inequality a>x ≤ β is not redundant) and pick x ∈ P such that
a>x < β (which must exist because dim(P) = n− rank(A)).

Consider z = x + (β − a>x)/(a>y − a>x)(y − x) which satisfies a>z = β and z ∈ P .
Hence F := {x ∈ P : a>x = β} 6= ∅ and F 6= P . This yields that F is a face (by
Lemma 2.2) and has dimension n− rank(A)− 1.

An other important class of faces are minimal faces, i.e., faces that do not contain any
other face. For these we have:

Lemma 2.6. Let P = {x : Ax ≤ b} be a polyhedron. A non-empty set F ⊆ P is a minimal
face of P if and only if F = {x ∈ Rn : A′x = b′} for some subsystem of Ax ≤ b.

13

H1

x3

Facet

H2

Edge

H3

Vertex

x2

x1

Figure 2.4: Facet, vertex, and edge are all faces.

Proof. If F is a minimal face of P , by Lemma 2.2 there is a subsystem A′x ≤ b′ of Ax ≤ b
such that F = {x ∈ P : A′x = b′}. We choose A′x ≤ b′ maximal. Let A′′x ≤ b′′ be a
minimal subsystem of Ax ≤ b such that F = {x : A′x = b′, A′′x ≤ b′′}. We claim that
A′′x ≤ b′′ does not contain any inequality.

Suppose, on the contrary, that a′′x ≤ β′′ is an inequality of A′′x ≤ b′′. Since it is not
redundant for the description of F , Lemma 2.5 implies that F ′ := {x : A′x = b′, A′′x ≤
b′′, a′′x = β′′} is a facet of F . By Corollary 2.4 F ′ is also a face of P , contradicting the
assumption that F is a minimal face of P .

Now let ∅ 6= F = {x : A′x = b′} ⊆ P for some subsystem A′x ≤ b′ of Ax ≤ b. Obviously
F has no faces except itself. By Lemma 2.2, F is a face of P and by Corollary 2.4, F is a
minimal face of P .

Corollary 2.3 and Lemma 2.6 already imply that Linear Programming can be solved
by solving the linear equation system A′x = b′ for each subsystem A′x ≤ b′. This approach
obviously yields an exponential time algorithm.

2.3 Simplex Algorithm

An algorithm which is more practicable (although also exponential in the worst case) is
the Simplex algorithm. The algorithm is based on the following important consequence
of Lemma 2.6.

Corollary 2.7. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. Then all minimal faces of
P have dimension n− rank(A). The minimal faces of polytopes are vertices.

This justifies that, if we are dealing with a linear program which is bounded with
respect to c>x, then it suffices to search an optimum solution among the vertices of the

14

polyhedron induced by the feasible region S. This is precisely what the Simplex algorithm
is doing.

The Simplex algorithm was introduced by Dantzig in the 1950s, but the underlying
idea to traverse the vertices of the polyhedron dates back to Fourier in the 1820s. We
first restrict our attention to the case when an initial vertex is given as an input. This
certainly requires that the LP is feasible, but it could still be unbounded, i.e., we will solve
the questions (1) and (3) in Problem 2.1. Later we discuss how to find an initial vertex if
this is possible, i.e., we will also decide (2).

Given an Initial Vertex

For a set I of row indices we write AI for the submatrix of A consisting of the rows in I
only; similarly bI for the respective components in the vector b. We abbreviate ai = A{i}
and bi = b{i}.

Now consider Algorithm 2.1. Before we prove the correctness, we explain the tasks
of the individual steps. In Step 1 the algorithm finds a subsystem with n inequalities of
Ax ≤ b that is satisfied with equality, i.e., the (given) solution x is an (initial) vertex of the
polyhedron induced. This step relies on Lemma 2.6. Recall that the non-singular n × n
matrix AI is a basis of Rn. The elements of the set I are thus called basic indices. In
Step 2 the algorithm checks if the current vertex x is already optimal. This check uses the
following important observation, called weak duality. Details follow below.

Lemma 2.8. Let x and y be respective feasible solutions of the LPs

max{c>x : Ax ≤ b}, (2.7)

min{y>b : y>A = c>, y ≥ 0}. (2.8)

Then c>x ≤ y>b.

Proof. c>x = (y>A)x = y>(Ax) ≤ y>b.

The selection rules for i and j in Steps 3 and 4 (called Bland’s pivot rule) avoid that the
algorithm runs into cyclic repetitions. In Step 5 the algorithm changes the basic indices,
“moves on” to a new vertex, and repeats.

We also show that the algorithm terminates after at most
(
m
n

)
iterations (which is not

polynomial). It was conjectured that Simplex is polynomial until Klee and Minty gave
an example where the algorithm (with Bland’s pivot rule) uses 2n iterations on an LP
with n variables and 2n constraints. It is not known if there is a pivot rule that leads
to polynomial running time. Nonetheless, Simplex with Bland’s pivot rule is frequently
observed to terminate after few iterations when run on “practical instances”.

Theorem 2.9. The algorithm Simplex terminates after at most
(
m
n

)
iterations. If it

returns x and y in Step 2, these vectors are optimum solutions for the LPs (2.7) and (2.8),
respectively with

c>x = y>b.

If the algorithm returns w in Step 3, then c>w > 0 and the LP (2.7) is unbounded.

Proof. We first show that the following conditions hold at any stage of the algorithm:

(a) x ∈ P ,

(b) AIx = bI ,

15

Algorithm 2.1 Simplex

Input. A Matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn, and a vertex x of P = {x ∈ Rn :
Ax ≤ b}.

Output. A vertex x of P attaining max{c>x : x ∈ P} or a vector w ∈ Rn with Aw ≤ 0
and c>w > 0 (i.e., the LP is unbounded).

Step 1. Choose a set of n row indices I such that AI is non-singular and AIx = bI .

Step 2. Compute c>(AI)−1 and add zeros in order to obtain a vector y ∈ Rm with c> =
y>A such that all entries outside I are zero. If y ≥ 0 then return x (and y).

Step 3. Choose the minimum index i with yi < 0. Let w be the column of −(AI)−1 with
index i. Thus AI−{i}w = 0 and aiw = −1. If Aw ≤ 0 then return w.

Step 4. Let

λ := min
{

bj − ajx

ajw
: ajw > 0 j = 1, . . . ,m,

}
,

and let j be the smallest row index attaining this minimum.

Step 5. Set I := (I − {i}) ∪ {j} and x := x + λw. Go to Step 2.

(c) AI is non-singular,

(d) c>w > 0, and

(e) λ ≥ 0.

(a) and (b) hold initially. Steps 2 and 3 guarantee c>w = y>Aw = −yi > 0, i.e., (d). By
Step 4, x ∈ P implies λ ≥ 0, i.e., (e). Property (c) follows from AI−{i}w = 0 and ajw > 0.
Thus we only have to show that Step 5 preserves (a) and (b).

We show that if x ∈ P , then also x + λw ∈ P . For any row index k we have two cases:
If akw ≤ 0 then (using λ ≥ 0) ak(x + λw) ≤ akx ≤ bk. Otherwise λ ≤ (bk − akx)/akw and
hence ak(x + λw) ≤ akx + akw(bk − akx)/akw = bk. (Indeed, λ is chosen in Step 4 to be
the largest number such that x + λw ∈ P). This implies (a).

To show (b), note that after Step 4 we have AI−{i}w = 0 and λ = (bk − akx)/akw, so
AI−{i}(x+λw) = AI−{i}x = bI−{i}. Furthermore aj(x+λw) = ajx+ajw(bj−ajx)/ajw =
bj . Thus, after Step 5 the condition AIx = bI holds again.

Thus (a)-(e) hold at any stage. If the algorithm returns x and y in Step 2, then they
are indeed feasible solutions for the LPs (2.7) and (2.8). Moreover,

c>x = y>Ax = y>
(

AI

AI

)
x = y>

(
bI

bI

)
= y>b,

because the components of y outside I are zero. This proves the optimality by using
Lemma 2.8. If the algorithm returns w in Step 3, then the LP (2.7) is unbounded because,
for every µ ≥ 0 we have A(x+µw) = Ax+µAw ≤ b, i.e., x+µw ∈ P , and c>(x+µw) > c>x.

We finally show termination after at most
(
m
n

)
iterations. Let I(k) and x(k) be the set I

and vertex x in iteration k. If the algorithm did not terminate after
(
m
n

)
iterations, there

are iterations k < ` with I(k) = I(`). By (b) and (c) we must have x(k) = x(`). By (d) and

16

(e), c>x never decreases, and it strictly increases if λ > 0. Thus λ must be zero in the
iterations k, . . . , `− 1, and x(k) = · · · = x(`).

Let h be the highest index leaving I in one of the iterations k, . . . , `−1, say in iteration
p. Index h must also have been added to I in some iteration q ∈ {k, . . . , `−1}. Let y′ be the
vector y at iteration p and w′ be the vector w at iteration q. We have (y′)>Aw′ = c>w′ > 0.
So let r be an index for which (y′)>arw

′ > 0. Since y′r 6= 0, index r belongs to I(p). If
r > h, index r would also belong to I(q) and I(q+1), implying arw = 0. So r ≤ h. But by
the choice of i in iteration p we have y′r < 0 if and only if r = h, and by the choice of j in
iteration q we have arw

′ > 0 if and only if r = h (using λ = 0 and arx
(q) = arx

(p) = br as
r ∈ I(p)). This is a contradiction.

The General Case

Now we show how to find an initial vertex, or to conclude that the respective LP max{c>x :
Ax ≤ b} is infeasible. First substitute x = y − z, where y ≥ 0 and z ≥ 0 are our new
variables, and write the LP in equivalent form

max
{(

c −c
)(y

z

)
:
(
A −A

)(y
z

)
≤ b, y, z ≥ 0

}
,

i.e., we have introduced the sign-constrained variables y and z. We may hence assume
that the LP under consideration has the form

max{c>x : A′x ≤ b′, A′′x ≤ b′′, x ≥ 0}, (2.9)

where b′ ≥ 0 and b′′ < 0. Now run Simplex on the instance

min{(1>A′′)x + 1>y : A′x ≤ b′, A′′x + y ≥ b′′, x, y ≥ 0}, (2.10)

(1 denotes the vector whose entries are all one), where we can use the initial vertex
(x, y)> = (0, 0)>. It is an exercise to show that the LP (2.9) is feasible if and only if the
minimum value of (2.10) is exactly 1>b′′.

Example Execution

We consider our working example from Section 2.1 again, i.e., the algorithm is given

A =


4 −1
2 2
−5 2
−1 0
0 −1

 , b =


8
10
2
0
0

 , c =
(

1
1

)
,

and the initial vertex x = (0, 0)>.

17

Iteration 1

Step 1. x = (0, 0)>, I = {4, 5}

Step 2. AI =
(
−1 0
0 −1

)
, A−1

I =
(
−1 0
0 −1

)
,

c>A−1
i = (−1,−1)>,

y = (0, 0, 0,−1,−1)> y 6≥ 0

Step 3. i = 4, w = (1, 0)>,

Aw = (4, 2,−5,−1, 0)> 6≤ 0,

Step 4. λ = min
{

8− 0
4

,
10− 0

2

}
= 2, j = 1,

Step 5. I = {1, 5}, x = (0, 0)> + 2(1, 0)> = (2, 0)>.

x2

S

x1

Iteration 2

x = (2, 0)>, I = {1, 5}

Step 2. AI =
(

4 −1
0 −1

)
, A−1

I =
1
4

(
1 −1
0 −4

)
,

c>A−1
i = (1/4,−5/4)>,

y = (1/4, 0, 0, 0,−5/4)>, y 6≥ 0

Step 3. i = 5, w = (1/4, 1)>,

Aw = (0, 3/2,−1/4,−1/4,−1)> 6≤ 0,

Step 4. λ = min
{

10− 4
3/2

}
= 4, j = 2,

Step 5. I = {1, 2}, x = (2, 0)> + 4(1/4, 1)> = (3, 4)>.

x2

S

x1

Iteration 3

x = (3, 4)>, I = {1, 2}

Step 2. AI =
(

4 −1
2 1

)
, A−1

I =
1
6

(
1 1
−2 −4

)
,

c>A−1
i = (−1/6, 5/6)>,

y = (−1/6, 5/6, 0, 0, 0)>, y 6≥ 0

Step 3. i = 1, w = (−1/6, 1/3)>,

Aw = (−1, 0, 9/6, 1/6,−1/3)> 6≤ 0,

Step 4. λ = min
{

2− (−7)
9/6

,
0− (−3)

1/6

}
= 6, j = 3,

Step 5. I = {2, 3}, x = (3, 4)> + 6(−1/6, 1/3)> = (2, 6)>.

x2

S

x1

18

Iteration 4

x = (2, 6)>, I = {2, 3}

Step 2. AI =
(

2 1
−5 2

)
, A−1

I =
1
9

(
2 −1
5 2

)
,

c>A−1
i = (7/9, 1/9)>,

y = (0, 7/9, 1/9, 0, 0)>, y ≥ 0,

return x = (2, 6)> and y = (0, 7/9, 1/9, 0, 0)>.

2.4 Duality

Lemma 2.8 called weak duality was crucial for the optimality check of the Simplex algo-
rithm. In the lemma, the two considered LPs are related, but the choice of (2.8) seemed
to “fall from the sky”. First we explain the rationale behind (2.7) and (2.8), then define
duality, and finally state the strong duality theorem.

Ideas Behind Duality

Recall our working example from Section 2.1

maximize x1 + x2 (2.11)
subject to 4x1 − x2 ≤ 8 (2.12)

2x1 + x2 ≤ 10 (2.13)
− 5x1 + 2x2 ≤ 2 (2.14)
− x1 ≤ 0 (2.15)
− x2 ≤ 0 (2.16)

and notice that this LP is in the maximization form

max{c>x : Ax ≤ b}.

Because we are dealing with a maximization problem, every feasible solution x provides
the lower bound c>x on the optimum value c>x∗, i.e., we know c>x ≤ c>x∗.

Can we also obtain upper bounds on c>x∗? For any feasible solution x, the constraints
(2.12)–(2.16) are satisfied. Now compare the objective function (2.11) with the constraint
(2.13) coefficient-by-coefficient (where we remember that the xi ≥ 0 in this example):

1 · x1 + 1 · x2

≤ ≤
2 · x1 + 1 · x2 ≤ 10

Thus for every feasible solution x we have the upper bound x1+x2 ≤ 10, i.e., the optimum
value can be at most 10. Can we improve on this? We could try 7

9 · (2.13) + 1
9 · (2.14):

1 · x1 + 1 · x2

≤ ≤
(7
9 · 2 + 1

9 · (−5))x1 + (7
9 · 1 + 1

9 · 2)x2 ≤ 7
9 · 10 + 1

9 · 2 = 72
9 = 8

Hence we have x1 + x2 ≤ 8 for every feasible x and thus an upper bound of 8 on the
optimum value. If we look closely, our choices 7/9 and 1/9 give 7

9 · 2 + 1
9 · (−5) = 1 and

19

7
9 · 1 + 1

9 · 2 = 1, i.e., we have combined the coefficients of the objective function c>x with
equality (and need hence not argue that the xi are non-negative).

This suggests the following approach. Combine the constraints with non-negative
multipliers y = (y1, y2, y3) such that each coefficient in the result equals the corresponding
coefficient in the objective function, i.e., we want y>A = c>. We associate y1 with (2.12),
y2 with (2.13), y3 with (2.14). Notice that the yi are sign constrained because we are
multiplying an inequality of the system Ax ≤ b, i.e., if a multiplier yi is negative we have
to change the corresponding inequality from ≤ to ≥, but then we can not compare it to
the other inequalities any more. Now

y1(2.12) + y2(2.13) + y3(2.14)

evaluates to

y1(4x1 + (−1)x2) + y2(2x1 + x2) + y3(−5x1 + 2x2) =
(4y1 + 2y2 + (−5)y3)x1 + (−y1 + y2 + 2y3)x2 ≤ 8y1 + 10y2 + 2y3

and we want to find values for y1, y2, y3 ≥ 0 that satisfy:

1 · x1 + 1 · x2

= =
(4y1 + 2y2 + (−5)y3)x1 + (−y1 + y2 + 2y3)x2 ≤ 8y1 + 10y2 + 2y3.

Of course, we are interested in the best choice for y = (y1, y2, y3) ≥ 0 the approach can
give. This means that we want to minimize the upper bound 8y1 + 10y2 + 2y3. We simply
write down this task as a mathematical program.

minimize 8y1 + 10y2 + 2y3 (2.17)
subject to 4y1 + 2y2 − 5y3 = 1 (2.18)

− y1 + y2 + 2y3 = 1 (2.19)
y1, y2, y3 ≥ 0 (2.20)

Further note that the new objective function is the right hand side (8, 10, 2)> of the original
LP and that the new right hand side is the objective function (1, 1)> of the original LP.
Thus the above LP is of the form

min{y>b : y>A = c>, y ≥ 0}.

This should explain the special choice of the LPs (2.7) and (2.8). The rationale is that
we can find upper bounds for the maximization LP by combining its constraints using
multipliers.

Recall from Section 2.1 that there is a feasible solution x = (2, 6)> that gives c>x = 8.
And we have found multipliers y = (0, 7/9, 1/9)> such that y>b = 8, i.e.,

c>x = y>b.

Hence we have a certificate that the solution x = (2, 6) is indeed optimal (because we
have a matching upper bound). Not surprisingly this is no exception but the principal
statement of the strong duality theorem.

20

Strong Duality

Given an LP P = max{c>x : Ax ≤ b} called primal, we define the dual to be D =
min{y>b : y>A = c>, y ≥ 0}.

Lemma 2.10. The dual of the dual of an LP is (equivalent to) the original LP.

Now we can say that the LPs P and D are dual to each other or a primal-dual pair.
The following strong duality theorem is the most important result in LP theory and the
basis for a lot of algorithms for COPs.

Theorem 2.11 (Strong Duality). For any primal-dual pair P = max{c>x : Ax ≤ b} and
D = min{y>b : y>A = c>, y ≥ 0} we have:

(1) If P has an optimum solution x, say, then D also has an optimum solution y and

c>x = y>b.

(2) If P is unbounded, then D is infeasible.

(3) If P is infeasible, then D is infeasible or unbounded.

Proof. For (1) let us assume for the moment that P and D have both optimum solutions.
We show that the optimal objective values of P and D are equal. By assumption, we
have that D has a feasible vertex. Now run Simplex on the LP D and this initial vertex.
By Lemma 2.8, the (assumed) existence of some feasible x for P , shows that D is not
unbounded. Thus, by Theorem 2.9, Simplex returns optimum solutions y and z for D
and its dual. However, this dual is equivalent to P and we have y>b = c>x as claimed.

We still have to show that if P has an optimum solution then also D has an optimum
solution. We use:

Lemma 2.12 (Farkas Lemma). There is a vector
x with Ax ≤ b

x ≥ 0 with Ax ≤ b

x ≥ 0 with Ax = b

if and only if y>b ≥ 0 for all


y ≥ 0 with y>A = 0
y ≥ 0 y>A ≥ 0
y with y>A ≥ 0

.

Proof. For the first case, if there is a vector x with Ax ≤ b, then y>b ≥ y>Ax = 0 for
each y ≥ 0 with y>A = 0. Now consider the LP min{1>w : Ax− w ≤ b, w ≥ 0} which is
equivalent to

max
{(

0 −1
)(x

w

)
:
(

A −I
0 −I

)(
x
w

)
≤
(

b
0

)}
.

The dual of this is min{y>b : y>A = 0, 0 ≤ y ≤ 1}. Both LPs are feasible for example for
x = 0, w = |b|, and y = 0 and we may apply what we have proved above and infer that
min{1>w : Ax− w ≤ b, w ≥ 0} = min{y>b : y>A = 0, 0 ≤ y ≤ 1}. The system Ax ≤ b is
feasible if and only if the optimum value of min{1>w : Ax−w ≤ b, w ≥ 0} = 0. Thus the
first case is proved.

For the second case apply the first to the system (A,−I)>x ≤ (b, 0)>. For the third
use the system (A,−A)>x ≤ (b,−b)>.

21

Now assume that the primal LP P = max{c>x : Ax ≤ b} has an optimum solution x
but the dual D = min{y>b : y>A = c>, y> ≥ 0} is infeasible. (It can not be unbounded
due to Lemma 2.8.) As D is infeasible there is no vector y ≥ 0 with y>A = c>. But now
we apply Lemma 2.12 and obtain that there must be a vector z with Az ≥ 0 and c>z < 0.
But now x − z is feasible for P since A(x − z) = Ax − Az ≤ b and c>(x − z) > c>x
contradicts the optimality of x.

The claim (2) directly follows from Lemma 2.8. The claim (3) is just an alternative
formulation for (1) and stated in the theorem for clarity.

The theorem has a lot of implications but we only list two of them. The first (obvious)
one is called complementary slackness (and gives another way of proving optimality).

Corollary 2.13. Let max{c>x : Ax ≤ b} and min{y>b : y>A = c, y ≥ 0} be a primal-
dual pair and let x and y be respective feasible solutions. Then the following statements
are equivalent:

(1) x and y are both optimum solutions.

(2) c>x = y>b.

(3) y>(b−Ax) = 0.

Furthermore, the fact that a system Ax ≤ b is infeasible can be proved by giving a
vector y ≥ 0 with y>A = 0 and y>b < 0.

Corollary 2.14. There is a vector x with Ax ≤ b if and only if y>b ≥ 0 for each vector
y ≥ 0 for which y>A = 0.

22

Chapter 3

Network Flows

Flow problems are among the best-understood problems in combinatorial optimization.
They are rather important because of their numerous applications.

3.1 Maximum Flows and Minimum Cuts

A network is a (simple) digraph G = (V,A) where each edge has a capacity c : A → R+

and we have two distinguished vertices, the source s and the sink t. Thus we often write
N = (G, c, s, t).

The maximum flow problem asks to transport as many units from the source to the sink
without violating the edge capacities. More precisely, a flow f is a function f : A → R+

which respects the edge capacities, i.e., 0 ≤ f(e) ≤ c(e) for all e ∈ A. We call f flow
conserving at a vertex v if

exf (v) :=
∑

e∈δ−(v)

f(e)−
∑

e∈δ+(v)

= 0.

Here δ−(v) is the set of incoming edges of v, i.e., δ−(v) = {uv ∈ A : u ∈ V } and δ+(v)
the set of outgoing edges of v, i.e., δ+(v) = {vu ∈ A : u ∈ V }. The quantity exf (v) is the
excess of v. An s− t-flow in a network N is a flow f with exf (s) ≤ 0 and exf (v) = 0 for
all v ∈ V − {s, t}. Its value is defined by val(f) = −exf (s). See Figure 3.1

Problem 3.1 Maximum Flow

Instance. A network N = (G, c, s, t).

Task. Find an s− t-flow of maximum value in N .

We can formulate the maximum flow problem as an LP in the variables fe for e ∈ A.

maximize
∑

e∈δ+(s)

fe −
∑

e∈δ−(s)

fe,

subject to
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0 v ∈ V − {s, t},

fe ≤ c(e) e ∈ A,

fe ≥ 0.

23

s t

source sink

Figure 3.1: A network with source s and sink t.

Since the flow f = 0 is feasible for this LP, and the LP is obviously bounded (by∑
e∈δ+(s) c(e)) we have that the Maximum Flow problem always has an optimum so-

lution. Of course, we can solve the problem by using Simplex but we are not satisfied
with this – we want a combinatorial algorithm (not solving an LP) with guaranteed poly-
nomial running time.

Let S be a subset of the vertices. The induced cut is the set of directed edges δ+(S) =
{uv ∈ A : u ∈ S, v ∈ V − S}; denote δ−(S) = {vu ∈ A : u ∈ S, v ∈ V − S}. Its capacity
cap(S) =

∑
e∈δ+(S) c(e). An s − t-cut is a cut so that s ∈ S and t ∈ V − S. A minimum

cut refers to one with minimal capacity among all s− t-cuts.
The following result tells us that the value of a flow can be expressed through the

incoming and outcoming flow of an arbitrary cut. Furthermore, the value of any flow
(including the maximum one) is bounded from above by the capacity of any cut. Notice
the similarity to weak duality. Not surprisingly, a strong duality result also holds for
network flows. We will see below that the value of a maximum flow equals the capacity of
a minimum cut.

Lemma 3.1. For any s− t-cut S and any s− t-flow f we have that

(1) val(f) =
∑

e∈δ+(S) f(e)−
∑

e∈δ−(S) f(e),

(2) val(f) ≤
∑

e∈δ+(S) c(e) = cap(S).

Proof. We use the flow conservation property which holds for all v ∈ S − {s} to find

val(f) =
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e) =
∑
v∈S

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


=

∑
e∈δ+(S)

f(e)−
∑

e∈δ−(S)

f(e).

Furthermore we have val(f) ≤ cap(S) since 0 ≤ f(e) ≤ c(e).

The following definition and structural result are the basis for an algorithm. A path
P from s to a vertex v is called f-augmenting with respect to a flow f if

(1) f(e) < c(e) for every forward edge, i.e., e = uw ∈ A such that uw ∈ P ,

(2) f(e) > 0 for every backward edge, i.e., e = uw ∈ A such that wu ∈ P .

forward edges backward edges

24

By how much can we increase the current flow value using a particular augmenting path
P? Define the quantity

α = min{c(e)− f(e) : e foreward edge in P} ∪ {f(e) : e backward edge in P}.

The following construction of a new flow f ′ is called augmenting f by α along P . Set
f ′(e) = f(e) + α if e is foreward edge in P , f ′(e) = f(e) − α if e is backward edge in P ,
and f ′(e) = f(e) otherwise.

Observation 3.2. The function f ′ defines a flow.

Proof. By definition of the quantity α we have that 0 ≤ f ′(e) ≤ c(e) for all e ∈ A. It
remains to show that f ′ is flow conserving. It is clear that exf ′(s) ≤ exf (s) ≤ 0. For any
vertex v ∈ V − {s, t} we distinguish four cases:

+α +α
v

+α −α
v

(a) foreward/foreward (b) foreward/backward
−α +α

v
−α −α

v

(c) backward/foreward (d) backward/backward

This yields the claim.

Algorithm 3.1 Ford-Fulkerson

Input. Network N = (G, c, s, t) with c : A → N.

Output. s− t-flow f of maximum value.

Step 1. Set f(e) = 0 for all e ∈ A.

Step 2. Find an f -augmenting path P . If none exists then return f .

Step 3. Compute

α = min{c(e)− f(e) : e foreward edge in P} ∪ {f(e) : e backward edge in P}.

and augment f by α along P . Go to Step 2.

Theorem 3.3. In a network N , the maximum value of an s− t-flow equals the minimum
capacity of an s− t-cut.

Proof. We show that an s − t-flow f has maximum value if and only if there is no f -
augmenting path from s to t. In that case we will be able to find a minimum cut R with
equal capacity.

Let there be an f -augementing path P from s to t, let α be as above and obtain f ′ by
augmenting f by α along P . Observe that val(f ′) > val(f), i.e., that f is not maximal.

Now let there be no f -augmenting path from s to t. Consider the set S of vertices with
augmenting paths from s, i.e., S = {v ∈ V : there is an f -augmenting path from s to v},
i.e., t 6∈ S. By definition of augmenting paths, we must have f(e) = c(e) for all e ∈
δ+(S) and f(e) = 0 for all e ∈ δ−(S). Hence, using Lemma 3.1 (1), we have val(f) =∑

e∈δ+(S) c(e) = cap(S). By Lemma 3.1 (2) f must be a maximum flow and S be a
minimum cut.

25

If all capacities are integers then α is an integer and the algorithm terminates after a
finite number of iterations. Thus we obtain the following important consequence:

Corollary 3.4. If the capacities of a network N are integers, then there is an integral
maximum flow.

It is an exercise to show the following flow decomposition result.

Theorem 3.5. Given a network N = (G, c, s, t) and an s− t-flow f then there is a familiy
P of simple paths, a familily C of simple cycles and positive numbers h : P ∪C → R+ such
that val(f) =

∑
T∈P∪C h(T) and |P|+ |C| ≤ |A|.

We have not yet specified how we actually choose the augmenting paths mentioned
in Step 2 of the algorithm Ford-Fulkerson. This must be done carefully in order to
obtain a polynomial time algorithm as the following instance illustrates.

Example 3.6. To show that Ford-Fulkerson is not a polynomial time algorithm con-
sider the following network. Here M is a large number.

s t

b

a
M

1

M M

M

Alternatingly augmenting one unit of flow along the paths s-a-b-t and s-b-a-t requires 2M
augmentations. This is already exponential because the (binary) input size of the graph
is O (log M). In contrast the augmenting paths s-a-t and s-b-t already give a maximum
flow after two augmentations.

3.2 Edmonds-Karp Algorithm

Example 3.6 suggests that it may be a good idea to always choose shortest augmenting
paths, i.e., with minimum number edges. Indeed, the algorithm Edmonds-Karp below
uses this strategy and yields polynomial running time.

Algorithm 3.2 Edmonds-Karp

Input. Network N = (G, c, s, t) with c : A → N.

Output. s− t-flow f of maximum value.

Step 1. Set f(e) = 0 for all e ∈ A.

Step 2. Find a shortest f -augmenting path P w.r.t. the number of edges. If none exists
then return f .

Step 3. Compute α as above and augment f by α along P . Go to Step 2.

Theorem 3.7. The algorithm Edmonds-Karp computes a maximum s− t-flow f in any
network N with n vertices and m edges in time O

(
nm2

)
.

26

The following lemma is crucial for the proof of the worst-case running time. Let
f0, f1, f2, . . . be the flows constructed by the algorithm. Denote the shortest length of an
augmenting path from s to a vertex v with respect to fk by xv(k) and respectively from v
to t by yv(k).

Lemma 3.8. We have that

(1) xv(k + 1) ≥ xv(k) for all k and v,

(2) yv(k + 1) ≥ yv(k) for all k and v.

Proof. Suppose for the sake of contradiction that (1) is violated for some pair (v, k). We
may assume that xv(k + 1) is minimal among the xw(k + 1) for which (1) does not hold.

Let e be the last edge in a shortest augmenting path from s to v with respect to fk+1.
Suppose e = uv is a forward edge. Hence fk+1(e) < c(e), xv(k + 1) = xu(k + 1) + 1, and
xu(k + 1) ≥ xu(k) by our choice of xv(k + 1). Thus xv(k + 1) ≥ xu(k) + 1. Suppose that
fk(e) < c(e) which yields xv(k) ≤ xu(k) + 1 and thus xv(k + 1) ≥ xv(k), a contradiction.

Hence we must have fk(e) = c(e) which implies that e was a backward edge when
fk was changed to fk+1. As we used an augmenting path of shortest length we have
xu(k) = xv(k) + 1 and thus xv(k + 1) − 1 = xu(k + 1) ≥ xu(k) ≥ xv(k) + 1. Hence
xv(k + 1) ≥ xv(k) + 2 yields a contradiction.

Similarly when e is a backward edge. The proof of (2) is analogous to (1).

Proof of Theorem 3.7. When we increase the flow, the augmenting path always contains
a critical edge, i.e., an edge where the flow is either increased to meet the capacity or
reduced to zero.

Let e = uv be critical in the augmenting path w.r.t. fk. This path has xv(k)+ yv(k) =
xu(k) + yu(k) edges. If e is used the next time in an augmenting path w.r.t. fh, say, then
it must be used in the opposite direction as w.r.t. fk.

Suppose that e = uv was a forward edge w.r.t. fk. Then xv(k) = xu(k) + 1 and
xu(h) = xv(h)+1. By Lemma 3.8 xv(h) ≥ xv(k) and yu(h) ≥ yu(k). Hence xu(h)+yu(h) =
xv(h) + 1 + yu(h) ≥ xv(k) + 1 + yu(k) ≥ xu(k) + yu(k) + 2. Thus the augmenting path
w.r.t. fh is at least two edges longer than the augmenting path w.r.t. fk. Similarly if e is
a backward edge.

No shortest augmenting path can contain more than n− 1 edges and hence each edge
can be critical at most (n − 1)/2 times. As each augmenting path contains at least one
critical edge, there can be at most O (nm) augmentations and each one takes time O (m).
This yields the running time of O(nm2).

There are further algorithms that solve the Maximum Flow problem in less time. For
example the Goldberg-Tarjan algorithm runs in time O

(
n2√m

)
; with sophisticated

implementations O
(
nm log(n2/m)

)
and O

(
min{m1/2, n2/3}m log(n2/m) log cmax

)
can be

reached.

3.3 Minimum Cost Flows

In this section we treat a more general problem than the Maximum Flow problem,
namely the Minimum Cost Flow problem. We are again given a digraph G = (V,A)
with edge capacities c : A → R+ and in addition to that a weight function w : A → R+

indicating the cost of an edge.

27

Now we define a modified notion of a flow. Let b : V → R be given such that∑
v∈V b(v) = 0. The value b(v) is called the balance of a vertex v; if b(v) < 0 then v

is called a source, if b(v) > 0 a sink. A b-flow in N is a function f : A → R such that
0 ≤ f(e) ≤ c(e) for all e ∈ A and exf (v) =

∑
e∈δ+(v) f(e)−

∑
e∈δ+(v) f(e) = b(v). A 0-flow

is called a circulation.
The cost of any flow f is

val(f) =
∑
e∈A

f(e)w(e).

Now the problem is to find a b-flow with minimum cost.

Problem 3.2 Minimum Cost Flow

Instance. A network N = (G, c, w, b).

Task. Find an b-flow of minimum cost in N or decide that none exists.

The second part of our task is easy. Given a network N = (G, c, w, b) with balance
vector b, we can decide if a b-flow exists by solving a Maximum Flow problem: Add
two vertices s and t and edges sv, vt with capacities c(sv) = max{0, b(v)} and c(vt) =
max{0,−b(v)} for all v ∈ V to N . Then any s − t-flow with value

∑
v∈V c(sv) in the

resulting network corresponds to a b-flow in the original network N .
For the remainder of the section we give an optimality criterion which leads directly

to an algorithm similar to the Ford-Fulkerson method. But here we augment along
cycles instead of paths. Again, the choice of the augmenting cycles must be done carefully.
But we omit this here and state the following theorem which refers to Orlin’s algorithm
without proof.

Theorem 3.9. There is an algorithm which solves the Minimum Cost Flow problem
on any network with n vertices and m edges in time O (m log m(m + n log n)).

We begin our discussion of an optimality criterion with a definition. Given a digraph
G = (V,A) with capacities c, weights w, and a flow f in G, construct the graph R = (V,A+
AR) with AR = {wv : vw ∈ A}, where r ∈ AR is called a reverse edge. (The notation
“+” here means that we actually allow parallel edges in R). The residual capacities
cR : A + AR → R+ are cR(vw) = c(vw) − f(vw) for vw ∈ A and cR(wv) = f(vw)
for wv ∈ AR. The residual weight wR : A → R is wR(vw) = w(vw) for vw ∈ A and
wR(wv) = −w(vw) for wv ∈ AR. Finally define the residual graph Gf = (V,Af) with
Af = {e ∈ A + AR : cR(e) > 0}.

Now, given a digraph G with capacities c and a b-flow f , an f-augmenting cycle is
a simple cycle in Gf . The following theorem is an optimality criterion for the Minimum
Cost Flow problem.

Theorem 3.10. Let N = (G, c, w, b) be an instance of the Minimum Cost Flow problem.
A b-flow f is of minimum cost if and only if there is no f-augmenting cycle with negative
total cost.

We prove the theorem in two steps. First we show that the difference between any two
b-flows gives rise to a circulation and second that this circulation can be decomposed into
circulations on simple cycles.

Lemma 3.11. Let G be a digraph with capacities c and let f and f ′ be b-flows in (G, c).
Construct R and Gf as above and define g : A+AR → R+ by g(e) = max{0, f ′(e)− f(e)}

28

for e ∈ A and g(e) = max{0, f(e) − f ′(e)} for all e ∈ AR. Then g is a circulation in R,
g(e) = 0 for all e 6∈ Af and val(g) = val(f ′)− val(f).

Proof. At each vertex v ∈ R we have∑
e∈δ+

R(v)

g(e)−
∑

e∈δ−R (v)

g(e) =
∑

e∈δ+
G(v)

(f ′(e)− f(e))−
∑

e∈δ−G(v)

(f ′(e)− f(e))

= b(v)− b(v) = 0.

so g is a circulation in R.
For e 6∈ Af consider two cases: If e ∈ A then f(e) = c(e) and hence f ′(e) ≤ f(e) which

gives g(e) = 0. If e = wv ∈ AR then e′ = vw ∈ A and f(e′) = 0 which yields f(e) = 0.
We verify the last statement

val(g) =
∑

e∈A+AR

w(e)g(e) =
∑
e∈A

w(e)f ′(e)−
∑
e∈A

w(e)f(e) = val(f ′)− val(f)

and the proof is complete.

Lemma 3.12. For any circulation f in a digraph G = (V,A) there is a familiy C of
at most |A| simple cycles in G and for each C ∈ C a positive number h(C) such that
f(e) =

∑
C∈C:e∈C h(C).

Proof. Follows from Theorem 3.5.

Proof of Theorem 3.10. If there is an f -augmenting cycle C with weight γ < 0, we can
augment f along C by some α > 0 and get a b-flow f ′ with cost decreased by −γα. So f
is not a mimimum cost flow.

If f is not a minimum cost b-flow, there is another b-flow f ′ with smaller cost. Consider
g as defined in Lemma 3.11 and observe that g is a circulation with val(g) < 0. By
Lemma 3.12, g can be decomposed into flows on simple cycles. Since g(e) = 0 for all
e 6∈ Af , all these cycles are f -augmenting and one of them must have negative total
cost.

3.4 Assignment Problem

A graph G = (V,E) with vertex set V = L ∪ R (“left” and “right”) is called bipartite if
the edge set satisfies E ⊆ {`r : ` ∈ L, r ∈ R}. An assignment (also called a matching) is a
subset M ⊆ E such that for every v ∈ V in the graph H = (V,M) we have degH(v) ≤ 1.
A matching is called perfect if degH(v) = 1 for every v ∈ V . (Of course, a necessary
condition for the existence of a perfect matching in a bipartite graph is |L| = |R|.)

The Assignment Problem has numerous applications and refers to the following. We
are given a bipartite graph G = (L ∪ R,E) and a weight function w : E → R. We are
asked to find a subset M ⊆ E with minimum total weight, i.e.,

val(M) =
∑
e∈M

w(e),

such that M is a perfect matching or to conclude that no such matching exists.

Theorem 3.13. The Assignment problem is a Minimum Cost Flow problem.

29

Problem 3.3 Assignment

Instance. Bipartite graph G = (L ∪R,E) and a weight function w : E → R.

Task. Find perfect matching M with minimum weight val(M) =
∑

e∈M w(e) or con-
clude that no such matching exists.

Proof. Let G = (V,E) be a bipartite graph with V = L ∪ R and |L| = |R| = n. Now we
construct a network N for the Minimum Cost Flow problem. We start with the vertices
V , add a vertex s and connect it with every vertex ` ∈ L with directed edges s`. Further
add a vertex t and introduce the directed edges rt for every r ∈ R. Further add directed
versions of all edges e ∈ E, i.e., a directed edge `r is added for every undirected edge `r.
The capacities of all these edges is one. The weights of the s` edges and the rt edges are
zero – the weights of the `r edges are equal to their weights in G. Finally add a directed
edge ts with infinite capacity and zero weight.

Now every integral 0-flow f in N with f(ts) = n corresponds to a perfect matching in
G with the same weight, and vice versa.

Below we give several applications of the Assignment problem. In most applications
the requirement |L| = |R| is disturbing, but can usually be handeled by adding artificial
vertices and edges.

Bipartite Cardinality Matching

In the Bipartite Cardinality Matching problem we are given a bipartite graph G =
(V,E) with V = L ∪ R, where |L| ≤ |R|. Our task is to find a matching with maximum
number of edges. We construct a network similarly as before: we add vertices s and t and
the directed edges s` and rt for all ` ∈ L and r ∈ R. All these edges have capacity equal
to one. Any integral s − t-flow of value k corresponds to a matching with k edges. Thus
we have to solve a Maximum Flow problem.

Moving Costs

A company has opened up n new factories and wants to transfer n managers to these in
a way that minimizes the total moving cost. A manager i incurs cost wij when moving
to factory j. An optimal solution for this problem is obviously a perfect matching with
minimum cost, i.e., we have a direct application of the Assignment problem.

Scheduling on Parallel Machines

In the Scheduling on Parallel Machines problem we are given m machines and n
jobs, where job j takes time pij if assigned to machine i. The jobs assigned to any machine
are scheduled in a certain order. The completion time of job j is denoted cj and refers
to the following: If job j is assigned to machine i then the times pik of the jobs k also
assigned to machine i but scheduled before job j contribute to the completion time of j,
i.e., cj =

∑
k on i, k ≤ j pik (where “k ≤ j” means that job k is scheduled before job j). The

objective is to minimize the total completion time
∑

j cj . It is an exercise to show that
this problem can be formulated as an Assignment problem.

30

Part II

Approximation Algorithms

31

Chapter 4

Knapsack

This chapter is concerned with the Knapsack problem. This problem is of interest in
its own right because it formalizes the natural problem of selecting items so that a given
budget is not exceeded but profit is as large as possible. Questions like that often also
arise as subproblems of other problems. Typical applications include: option-selection in
finance, cutting, and packing problems.

In the Knapsack problem we are given a budget W and n items. Each item i comes
along with a profit ci and a weight wi. We are asked to choose a subset of the items as to
maximize total profit but the total weight not exceeding W .

Example 4.1. We are given an amount of W and we wish to buy a subset of n items
and sell those later on. Each such item j has cost wj but yields profit cj . The goal is to
maximize the total profit. Consider W = 100 and the following profit-cost table:

j cj wj

1 150 100
2 2 1
3 55 50
4 100 50

Our choice of purchased items must not exceed our capital W . Thus the feasible solu-
tions are {1}, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}. Which is the best solution? Evaluating all
possibilities yields that {3, 4} gives 155 altogether which maximizes our profit.

Problem 4.1 Knapsack

Instance. Non-negative integral vectors c ∈ Nn, w ∈ Nn, and an integer W .

Task. Solve the problem

maximize val(x) =
n∑

j=1

cjxj ,

subject to
n∑

j=1

wjxj ≤ W,

xj ∈ {0, 1} j = 1, . . . n.

32

For an item j the quantity cj is called its profit. The profit of a vector x ∈ {0, 1}n is
val(x) =

∑n
j=1 cjxj .

The number wj is called the weight of item j. The weight of a vector x ∈ {0, 1}n

is given by weight(x) =
∑n

j=1 wjxj . In order to obtain a non-trivial problem we assume
wj ≤ W for all j = 1, . . . , n and

∑n
j=1 wj > W throughout.

Knapsack is NP-hard which means that “most probably”, there is no polynomial
time optimization algorithm for it. However, in Section 4.1 we derive a simple 1/2-
approximation algorithm. In Section 4.3 we can even improve on this by giving a polynomial-
time 1− ε-approximation algorithm (for every fixed ε > 0).

4.1 Fractional Knapsack and Greedy

A direct relaxation of Knapsack as an LP is often referred to as the Fractional Knap-
sack problem:

maximize val(x) =
n∑

j=1

cjxj ,

subject to
n∑

j=1

wjxj ≤ W,

0 ≤ xj ≤ 1 j = 1, . . . , n.

This problem is solvable in polynomial time quite easily. The proof of the observation
below is left as an exercise.

Observation 4.2. Let c, w,∈ Nn be non-negative integral vectors with

c1

w1
≥ c2

w2
≥ · · · ≥ cn

wn

and let

k = min

{
j ∈ {1, . . . , n} :

j∑
i=1

wi > W

}
.

Then an optimum solution for the Fractional Knapsack problem is given by

xj = 1 for j = 1, . . . , k − 1,

xj =
W −

∑k−1
i=1 wi

wk
for j = k, and

xj = 0 for j = k + 1, . . . , n.

The ratio cj/wj is called the efficiency of item j. The item number k, as defined above,
is called the break item.

Now we turn our attention back to the original Knapsack problem. We may assume
that the items are given in non-increasing order of efficiency. Observation 4.2 suggests the
following simple algorithm: xj = 1 for j = 1, . . . , k − 1, xj = 0 for j = k, . . . , n.

Unfortunately, the approximation ratio of this algorithm can be arbitrarily bad as the
example below shows. The problem is that more efficient items can “block” more profitable
ones.

33

Example 4.3. Consider the following instance, where W is a sufficiently large integer.

j cj wj cj/wj

1 1 1 1
2 W − 1 W 1− 1/W

The algorithm chooses item 1, i.e., the solution x = (1, 0) and hence val(x) = 1. The
optimum solution is x∗ = (0, 1) and thus val(x∗) = W − 1. The approximation ratio of
the algorithm is 1/(W − 1), i.e., arbitrarily bad. However, this natural algorithm can be
turned into a 1/2-approximation.

Algorithm 4.1 Greedy

Input. Integer W , vectors c, w ∈ Nn with wj ≤ W ,
∑

j wj > W , and c1/w1 ≥ · · · ≥
cn/wn.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Define k = min{j ∈ {1, . . . , n} :
∑j

i=1 wi > W}.

Step 2. Let x and y be the following two vectors: xj = 1 for j = 1, . . . , k − 1, xj = 0 for
j = k, . . . , n, and yj = 1 for j = k, yj = 0 for j 6= k.

Step 3. Return x if val(x) ≥ val(y); otherwise y.

Theorem 4.4. The algorithm Greedy is a 1/2-approximation for Knapsack.

Proof. The value obtained by the Greedy algorithm is equal to max{val(x), val(y)}.
Let x∗ be an optimum solution for the Knapsack instance. Since every solution

that is feasible for the Knapsack instance is also feasible for the respective Fractional
Knapsack instance we have that

val(x∗) ≤ val(z∗),

where z∗ is the respective optimum solution for Fractional Knapsack. Observe that it
has the structure z∗ = (1, . . . , 1, α, 0, . . . , 0), where α ∈ [0, 1) is at the break item k. The
solutions x and y are x = (1, . . . , 1, 0, 0, . . . , 0) and y = (0, . . . , 0, 1, 0, . . . , 0).

In total we have

val(x∗) ≤ val(z∗) = val(x) + αck ≤ val(x) + val(y) ≤ 2 max{val(x), val(y)}

which implies the approximation ratio of 1/2.

4.2 Pseudo-Polynomial Time Algorithm

Here we give a pseudo-polynomial time algorithm that solves Knapsack correctly by using
dynamic programming.

The idea is the following: Suppose you restrict yourself to choose only among the
first j items, for some integer j ∈ {0, . . . , n}. So all the solutions x you consider have
the form xi ∈ {0, 1} for i = 1, . . . , j and xi = 0 for i = j + 1, . . . , n. With abuse of
notation write x ∈ {0, 1}j0n−j . Now the variable mj,k equals the minimum total weight

34

of such a solution x with weight(x) ≤ W and val(x) = k. That is, after defining the set
Wj,k = {weight(x) : weight(x) ≤ W, val(x) = k, x ∈ {0, 1}j0n−j} we require

mj,k = inf Wj,k.

(Recall that for any finite set S of integers inf S = minS if S 6= ∅ and inf S = ∞,
otherwise.)

Let C be any upper bound on the optimum profit, for example C =
∑

i ci. Clearly, the
value of an optimum solution for Knapsack is the largest value k ∈ {0, . . . , C} such that
mn,k < ∞. The algorithm Dynamic Programming Knapsack recursively computes the
values for mj,k and then returns the optimum value for the given Knapsack instance. In
the algorithm below, the variables x(j, k) are n-dimensional vectors that store the solutions
corresponding to mj,k, i.e., with weight equal to mj,k and value k.

Algorithm 4.2 Dynamic Programming Knapsack

Input. Integers W,C, vectors w, c ∈ Nn.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Set m0,0 = 0, m0,k = ∞ for k = 1, . . . , C, and x(0, 0) = 0.

Step 2. For j = 1, . . . , n and k = 0, . . . , C do

mj,k =

{
mj−1,k−cj

+ wj if cj ≤ k and mj−1,k−cj
+ wj ≤ min{W,mj−1,k},

mj−1,k otherwise.

If the first case applied set x(j, k)i = x(j − 1, k − cj)i for i 6= j and x(j, k)j = 1.
Otherwise set x(j, k) = x(j − 1, k).

Step 3. Determine the largest k ∈ {0, . . . , C} such that mn,k < ∞. Return x(n, k).

Theorem 4.5. The Dynamic Programming Knapsack algorithm computes the op-
timum value of the Knapsack instance W , w, c ∈ Nn in time O (nC), where C is an
arbitrary upper bound on this optimum value.

Proof. The running time is obvious. For the correctness we prove that the values mj,k

computed by the algorithm satisfy

mj,k = inf Wj,k

by induction on j. Here Wj,k = {weight(x) : weight(x) ≤ W, val(x) = k, x ∈ {0, 1}j0n−j}
by definition.

The base case j = 0 is clear. For the inductive case first consider a situation when the
algorithm sets

mj,k = mj−1,k−cj
+ wj ,

i.e. we “take” the j-th item. Let y = x(j − 1, k − cj) be the solution that corresponds to
mj−1,k−cj

. The solution x = x(j, k) that corresponds to mj,k is obtained from y by setting
xi = yi for i 6= j and xj = 1. The value of x is val(x) = k. By definition of the algorithm
we have weight(x) = weight(y) + wj = mj−1,k−cj

+ wj ≤ W and thus x ∈ Wj,k.

35

By construction of the algorithm and induction hypothesis we have weight(x) ≤
inf Wj−1,k and weight(x) = wj + inf Wj−1,k−cj

. That is, the weight of x is at most the
weight of any solution without the j-th item and at most the weight of any solution
including the j-th item. Hence mj,k = inf Wj,k.

In the other situation, when the algorithm sets

mj,k = mj−1,k,

then either cj > k and hence no solution with value equal to k can contain the j-th item,
or mj−1,k + wj > W , i.e., adding the j-th item is infeasible, or mj−1,k + wj > inf Wj−1,k,
i.e., there is a solution with less weight and still value equal to k.

4.3 Fully Polynomial-Time Approximation Scheme

Here we give a fully polynomial time approximation scheme (FPTAS), i.e., we show that for
every fixed ε > 0 there is an 1− ε-approximation algorithm that runs in time polynomial
in the input size and 1/ε. From a complexity-theoretic point of view this is the best that
can be hoped for: Assuming P 6= NP there is no polynomial time algorithm that solves
Knapsack optimally on every instance, but the FPTAS delivers solutions with arbitrarily
good approximation guarantees in polynomial time. (Unfortunately not many problems
admit an FPTAS.)

A common theme in constructing FPTASs is the following: First find an algorithm
that solves the problem exactly (mostly using the dynamic programming paradigm). This
algorithm usually has pseudo-polynomial or even exponential running time. Second con-
struct an algorithm for “rounding” input-instances, i.e., reducing the input-size. This
modification reduces the running time but may lead to inaccurate solutions.

The running time of Dynamic Programming Knapsack is proportional to nC. If
we divide we profit cj of each item by a number t and round the result down, then this
improves the running time of Dynamic Programming Knapsack by a factor of t but
may yield suboptimal solutions.

Algorithm 4.3 Knapsack FPTAS

Input. Integer W , vectors w, c ∈ Nn, a number ε > 0.

Output. Vector x ∈ {0, 1}n such that weight(x) ≤ W .

Step 1. Run Greedy on the instance W,w, c and let x be the solution. If val(x) = 0 then
return x.

Step 2. Set t = max{1, εval(x)/n} and set

c′j =
⌊cj

t

⌋
for j = 1, . . . , n.

Step 3. Set C = 2val(x)/t and apply the Dynamic Programming Knapsack algorithm
on the instance W,C,w, c′ and let y be the solution obtained.

Step 4. If val(x) ≥ val(y) return x otherwise y.

36

Theorem 4.6. For every fixed ε > 0, the Knapsack FPTAS algorithm is a 1 − ε-
approximation algorithm with running time O

(
n2/ε

)
.

Proof. The value of the solution returned by the algorithm is equal to max{val(x), val(y)}.
Let x∗ be an optimum solution for the instance W,w, c. By Theorem 4.4 we have 2val(x) ≥
val(x∗) and hence the choice C = 2val(x)/t is a legal upper bound for the optimum value of
the rounded instance W,w, c′. By Theorem 4.5 y is an optimum solution for this instance
and we have

val(y) =
∑

j

cjyj ≥
∑

j

tc′jyj = t
∑

j

c′jyj

≥ t
∑

j

c′jx
∗
j =

∑
j

tc′jx
∗
j >

∑
j

(cj − t)x∗j ≥ val(x∗)− nt.

If t = 1 then y is optimal by Theorem 4.5. Otherwise the above inequality and the choice
of t yields val(y) ≥ val(x∗)− εval(x) and hence

val(x∗) ≤ val(y) + εval(x) ≤ (1 + ε) max{val(x), val(y)}

which yields the approximation guarantee 1− ε/(1 + ε).
The running time of Dynamic Programming Knapsack on the rounded instance is

O (nC) = O

(
nval(x)

t

)
= O

(
n2

ε

)
which dominates the time needed for the other steps.

37

Chapter 5

Set Cover

The Set Cover problem this chapter deals with is again a very simple – yet quite general
– NP-hard combinatorial problem. It is widely applicable in sometimes unexpected ways.
The problem is the following: We are given a set U (called universe) of n elements, a
collection of sets S = {S1, . . . , Sk} where Si ⊆ U , and a cost function c : S → R+.
The task is to find a minimum cost subcollection S ′ ⊆ S that covers U , i.e., such that
∪S∈S′S = U .

Example 5.1. Consider this instance: U = {1, 2, 3}, S = {S1, S2, S3} with S1 = {1, 2},
S2 = {2, 3}, S3 = {1, 2, 3} and cost c(S1) = 10, c(S2) = 50, and c(S3) = 100. These
collections cover U : {S1, S2}, {S3}, {S1, S3}, {S2, S3}, {S1, S2, S3}. The cheapest one is
{S1, S2} with cost equal to 60.

For each set S, we associate a variable xS ∈ {0, 1} that indicates of we want to choose
S or not. We may thus write solutions for Set Cover as a vector x ∈ {0, 1}k. With this,
we write Set Cover as a mathematical program.

Problem 5.1 Set Cover

Instance. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Task. Solve the problem

minimize val(x) =
∑
S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ∈ {0, 1} S ∈ S.

Define the frequency of an element to be the number of sets it is contained in. Let
f denote the frequency of the most frequent element. In this chapter we present several
algorithms that either achieve approximation ratio O (log n) or f . Why are we interested
in a variety algorithms? Is one algorithm not sufficient? Yes, but here the focus is on the
techniques that yield these algorithms.

38

5.1 Greedy Algorithm

The Greedy algorithm follows the natural approach of iteratively choosing the most
cost-effective set and remove all the covered elements until all elements are covered. Let
C be the set of elements already covered at the beginning of an iteration. During this
iteration define the cost-effectiveness of a set S as c(S)/|S − C|, i.e., the average cost at
which it covers new elements. For later reference, the algorithm sets the price at which it
covered an element equal to the cost-effectiveness of the covering set. Further recall that
Hn =

∑n
i=1 1/i is called the n-th Harmonic number and that log n ≤ Hn ≤ log n + 1.

Algorithm 5.1 Greedy

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. C = ∅, x = 0.

Step 2. While C 6= U do the following:

(a) Find the most cost-effective set in the current iteration, say S.

(b) Let α = c(S)/|S − C|.
(c) Set xS = 1 and for each e ∈ S − C set price(e) = α.

(d) C = C ∪ S.

Step 3. Return x.

Theorem 5.2. The Greedy algorithm is an Hn-approximation algorithm for the Set
Cover problem.

It is an exercise to show that this bound is tight.

Direct Analysis

The following lemma is crucial for the proof of the approximation-guarantee. Number the
elements of U in the order in which they were covered by the algorithm, say e1, . . . , en.
Let x∗ be an optimum solution.

Lemma 5.3. For each k ∈ {1, . . . , n}, price(ek) ≤ val(x∗)/(n− k + 1).

Proof. In any iteration, the leftover sets of the optimal solution x∗ can cover the remaining
elements at a cost of at most val(x∗). Therefore, among these, there must be one set having
cost-effectiveness of at most val(x∗)/|C|. In the iteration in which element ek was covered,
C contained at least n − k + 1 elements. Since ek was covered by the most cost-effective
set in this iteration, we have that

price(ek) ≤
val(x∗)
|C|

≤ val(x∗)
n− k + 1

which was claimed.

39

Proof of Theorem 5.2. Since the cost of each set is distributed evenly among the new
elements covered, the total cost of the set cover picked is

val(x) =
n∑

i=k

price(ek) ≤ val(x∗)Hn,

where we have used Lemma 5.3.

Dual-Fitting Analysis

Here we will give an alternative analysis of the Greedy algorithm for Set Cover. We
will use the dual fitting method, which is quite general and helps to analyze a broad variety
of combinatorial algorithms.

For sake of exposition we consider a minimization problem, but the technique works
similarly for maximization. Consider an algorithm Alg which does the following:

(1) Let (P) be an integer programming formulation of the problem of interest. We are
interested in its optimal solution x∗, respectively its objective value val(x∗). Let (D)
be the dual of an linear programming relaxation of (P).

(2) The algorithm Alg computes a feasible solution x for (P) and a “solution” y for (D),
where we allow that y is infeasible for (D). But the algorithm has to ensure that

val(x) ≤ val(y),

where val is the objective function of (P) and val is the objective function of (D).

(3) Now divide the entries of y by a certain quantity α until y′ = y/α is feasible for (D).
(The method of dual fitting is applicable only if this property can be ensured.) Then
val(y′) is a lower bound for val(x∗) by weak duality, i.e.,

val(y′) ≤ val(x∗)

by Lemma 2.8.

(4) Putting these things together, we obtain the approximation guarantee of α by

val(x) ≤ val(y) = val(αy′) = αval(y′) ≤ αval(x∗).

Now we apply this recipe to Set Cover and consider the Greedy algorithm. For
property (1) we use our usual formulation

minimize
∑
S∈S

c(S)xS , (P)

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ∈ {0, 1} S ∈ S.

When we relax the constraints xS ∈ {0, 1} to 0 ≤ xS ≤ 1 and dualize the corresponding
linear program we find

maximize
∑
e∈U

ye, (D)

subject to
∑
e∈S

ye ≤ c(S) S ∈ S,

ye ≥ 0.

40

This dual can be derived purely mechanically (by applying the primal-dual-definition and
rewriting constraints if needed) this program has an intuitive interpretation. The con-
straints of (D) state that we want to “pack stuff” into each set S such that the cost c(S)
of each set is not exceeded, i.e., the sets are not overpacked. We seek to maximize the
total amount packed.

How about property (2)? The algorithm Greedy computes a certain feasible solution
x for (P), i.e., a solution xS = 1 if the algorithm picks set S and xS = 0 otherwise. What
about the vector y? Define the following vector: For each e ∈ U set ye = price(e), where
price(e) is the value computed during the execution of the algorithm.

By construction of the algorithm we have

val(x) =
∑
S∈S

c(S)xS =
∑
e∈U

price(e) =
∑
e∈U

ye = val(y),

i.e., Greedy satisfies property (2) of the dual fitting method (even with equality).
For property (3) the following result is useful.

Lemma 5.4. For every S ∈ S we have that∑
e∈S

ye ≤ Hnc(S).

Proof. Let S ∈ S with, say, k elements. Consider these in the ordering the algorithm
covered them, say, e1, . . . , ek. At the iteration when ei gets covered S contains k − i + 1
uncovered elements. Since Greedy chooses the most cost-effective set we have that

price(ei) ≤
c(S)

k − i + 1
,

i.e., the cost-effectiveness of the set the algorithm chooses can only be smaller than the
cost-effectiveness of S. (Be aware that “smaller” is “better” here.)

Summing over all elements gives

k∑
i=1

ye ≤ c(S)
k∑

i=1

1
k − i + 1

= c(S)Hk ≤ c(S)Hn

as claimed.

Now we are in position to finalize the dual-fitting analysis using property (4).

Proof of Theorem 5.2. Define the vector y′ = y/Hn, where y is defined above. Observe
that for each set S ∈ S we have∑

e∈S

y′e =
∑
e∈S

ye

Hn
=

1
Hn

∑
e∈S

ye ≤ c(S)

using Lemma 5.4. That means y′ is feasible for (D). Using the property (4) of the dual
fitting method proves the approximation guarantee of at most Hn.

41

5.2 Primal-Dual Algorithm

The primal-dual schema introduced here is the method of choice for designing approxi-
mation algorithms because it often gives algorithms with good approximation guarantees
and good running times. After introducing the ideas behind the method, we will use it to
design a simple factor f algorithm, where f is the frequency of the most frequent element.

The general idea is to work with an LP-relaxation of an NP-hard problem and its dual.
Then the algorithm iteratively changes a primal and a dual solution until the relaxed
primal-dual complementary slackness conditions are satisfied.

Primal-Dual Schema

Consider the following primal program:

minimize val(x) =
n∑

j=1

cjxj ,

subject to
n∑

j=1

aijxj ≥ bi i = 1, . . . ,m,

xj ≥ 0 j = 1, . . . , n.

The dual program is:

maximize val(y) =
m∑

i=1

biyi,

subject to
m∑

i=1

aijyi ≤ cj j = 1, . . . , n,

yi ≥ 0 i = 1, . . . ,m.

Most known approximation algorithms using the primal-dual schema run by ensuring one
set of conditions and suitably relaxing the other. We will capture both situations by
relaxing both conditions. If primal conditions are to be ensured, we set α = 1 below, and
if dual conditions are to be ensured, we set β = 1.

Primal Complementary Slackness Conditions. Let α ≥ 1. For each 1 ≤ j ≤ n:

either xj = 0 or cj/α ≤
n∑

i=1

aijyi ≤ cj .

Dual Complementary Slackness Conditions. Let β ≥ 1. For each 1 ≤ i ≤ m:

either yi = 0 or bi ≤
n∑

i=1

aijxj ≤ βbi.

Lemma 5.5. If x and y are primal and dual feasible solutions respectively satisfying the
complementary slackness conditions stated above, then

val(x) ≤ αβval(y).

42

Proof. We calculate directly using the slackness conditions and obtain

val(x) =
n∑

j=1

cjxj ≤ α

n∑
j=1

(
m∑

i=1

aijyi

)
xj

= α

m∑
i=1

 n∑
j=1

aijxj

 yi ≤ αβ

m∑
i=1

biyi = val(y)

which was claimed.

The algorithm starts with a primal infeasible solution and a dual feasible solution;
usually these are x = 0 and y = 0 initially. It iteratively improves the feasibility of the
primal solution and the optimality of the dual solution ensuring that in the end a primal
feasible solution is obtained and all conditions stated above, with a suitable choice for α
and β, are satisfied. The primal solution is always extended integrally, thus ensuring that
the final solution is integral. The improvements to the primal and the dual go hand-in-
hand: the current primal solution is used to determine the improvement to the dual, and
vice versa. Finally, the cost of the dual solution is used as a lower bound on the optimum
value, and by Lemma 5.5, the approximation guarantee of the algorithm is αβ.

Primal-Dual Algorithm

Here we derive a factor f approximation algorithm for Set Cover using the primal-dual
schema. For this algorithm we will choose α = 1 and β = f . We will work with the
following primal LP for Set Cover

minimize val(x) =
∑
S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

and its dual

maximize val(y) =
∑
e∈U

ye,

subject to
∑
e∈S

ye ≤ c(S) S ∈ S,

ye ≥ 0 e ∈ U.

For these LPs the primal and dual complementary slackness conditions are:

Primal Complementary Slackness Conditions. For each S ∈ S:

either xS = 0 or
∑
e∈S

ye = c(S).

A set S will be said to be tight if
∑

e∈S ye = c(S). So, this condition states that:
“Pick only tight sets into the cover.”

43

Dual Complementary Slackness Conditions. For each e ∈ U :

either ye = 0 or
∑

S:e∈S

xS ≤ f.

Since we will find a 0/1 solution for x, these conditions are equivalent to: “Each
element having non-zero dual value can be covered at most f times.” Since each
element is in at most f sets, this condition is trivially satisfied for all elements.

These conditions suggest the following algorithm:

Algorithm 5.2 Primal-Dual Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. x = 0, y = 0. Declare all elements uncovered.

Step 2. Unless all elements are covered, do:

(a) Pick an uncovered element, say e, and raise ye until some set goes tight.

(b) Pick all tight sets S in the cover, i.e., set xS = 1.

(c) Declare all the elements occuring in these sets as covered.

Step 3. Return x.

Theorem 5.6. The algorithm Primal-Dual Set Cover is a f-approximation algorithm
for Set Cover.

Proof. At the end of the algorithm, there will be no uncovered elements. Further no dual
constraint is violated since we pick only tight sets S into the cover and no element e ∈ S
will later on be a candidate for increasing ye. Thus, the primal and dual solutions will both
be feasible. Since they satisfy the primal and dual complementary slackness conditions
with α = 1 and β = f , by Lemma 5.5, the approximation guarantee is f .

Example 5.7. A tight example for this algorithm is provided by the following set system.
The universe is U = {e1, . . . , en+1} and S consists of n− 1 sets {e1, en}, . . . , {en−1, en} of
cost 1 and one set {e1, . . . , en+1} of cost 1 + ε for some small ε > 0. Since en appears in
all n sets, this system has f = n.

Suppose the algorithm raises yen in the first iteration. When yen is raised to 1, all
sets {ei, en}, i = 1, . . . , n− 1 go tight. They are all picked in the cover, thus covering the
elements e1, . . . , en. In the second iteration yen+1 is raised to ε and the set {e1, . . . , en+1}
goes tight. The resulting set cover has cost n + ε, whereas the optimum cover has cost
1 + ε.

5.3 LP-Rounding Algorithms

The central idea behind algorithms that make use of the LP-rounding technique is as
follows: Suppose you have an LP-relaxation of a certain NP-hard problem. Then you can
solve this optimally and try to “round” the optimal fractional solution to an integral one.

44

Here we derive a factor f approximation algorithm for Set Cover but this time by
rounding the fractional solution of an LP to an integral solution (instead of the primal-dual
schema). We consider our usual LP relaxation for Set Cover

minimize val(x) =
∑
s∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Simple Rounding Algorithm

The idea of the algorithm below is to include those sets S into the cover for which the
corresponding value zS in the optimal solution z of the LP is “large enough”.

Algorithm 5.3 Simple Rounding Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. Set x = 0, solve the LP relaxation below, and call the optimal solution z.

minimize val(x) =
∑
S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Step 2. For each set S set xS = 1 if zS ≥ 1/f .

Step 3. Return x.

Theorem 5.8. The algorithm Simple Rounding Set Cover is an f-approximation
algorithm for Set Cover.

Proof. Let x be the solution returned by the algorithm and z be the optimal solution of
the LP. Consider an arbitrary element e ∈ U . Since e is in at most f sets, one of these
sets must be picked to the extent of at least 1/f in the fractional solution z. Thus e is
covered due to the definition of the algorithm and x is hence a feasible cover. We further
have xS ≤ fzS and thus

val(x) ≤ fval(z) ≤ fval(x∗)

where x∗ is an optimal solution for the Set Cover problem.

Randomized Rounding

Another natural idea for rounding fractional solutions is to use randomization: For exam-
ple, for the above relaxation, observe that the values zS are between zero and one. We
may thus interpret these values as probabilities for choosing a certain set S.

45

Here is the idea of the following algorithm: Solve the LP-relaxation optimally and call
the solution z. With probability zS include the set S into the cover.

This basic procedure yields a vector x with expected value equal to the optimal frac-
tional solution value but might not cover all the elements. We thus repeat the procedure
“sufficiently many” times and include a set into our cover if it was included in any of
the iterations. We will show that O (log n) many iterations suffice yielding an O (log n)-
approximation algorithm.

Algorithm 5.4 Randomized Rounding Set Cover

Input. Universe U with n elements, collection S = {S1, . . . , Sk}, Si ⊆ U , a cost function
c : S → R.

Output. Vector x ∈ {0, 1}k

Step 1. Set x = 0, solve the LP relaxation below, and call the optimal solution z.

minimize val(x) =
∑
S∈S

c(S)xS ,

subject to
∑

S:e∈S

xS ≥ 1 e ∈ U,

xS ≥ 0 S ∈ S.

Step 2. Repeat 3 log n times: For each set S set xS = 1 with probability zS .

Step 3. Return x.

Theorem 5.9. In expectation, the algorithm Randomized Rounding Set Cover is an
3 log n-approximation algorithm for Set Cover.

Proof. Let z be an optimal solution for the LP. For each set S set xS = 1 with probability
zS . Then we have

E [val(x)] =
∑
S∈S

E [c(S)xS] =
∑
S∈S

c(S)Pr [xS = 1] =
∑
S∈S

c(S)zS = val(z).

We estimate the probability that an element u ∈ U is covered in one iteration. Let u
be contained in k sets and let z1, . . . , zk be the probabilities given in the solution z. Since
u is fractionally covered we have z1 + · · ·+ zk ≥ 1. With easy but tedious calculus we see
that – under this condition – the probability for u being covered is minimized when the zi

are all equal, i.e., z1 = · · · = zk = 1/k:

Pr [xS = 1] = 1− (1− z1) · · · · · (1− zk) ≥ 1−
(

1− 1
k

)k

≥ 1− 1
e
.

Summing up this step: In each of the iterations the expected value of the solution x
constructed increases by at most val(z) in expectation. Each element is covered with
probability at least 1 − 1/e. But maybe we have not covered all elements after 3 log n
iterations. Here we show that we will have with high probability.

The probability that element u is not covered at the end of the algorithm, i.e., after
3 log n iterations is

Pr [u is not covered] ≤
(

1
e

)3 log n

≤ 1
n3

.

46

Thus the probability that there is an uncovered element is at most 1/n2, i.e., rather small.
Clearly,

E [val(x)] ≤ 3 log nE [val(z)] ≤ 3 log nval(x∗),

where x∗ is an optimal solution for Set Cover. So, the algorithm returns a feasible
solution, with high probability, whose expected value is at most 3 log n.

The proof above shows that the algorithm is a 3 log n-approximation in expectation.
But we can actually strengthen the statement by showing that the approximation ratio is
12 log n with probability around 1/4. Use Markov’s inequality to show

Pr [val(x) ≥ 12 log nval(z)] ≤ E [val(x)]
12 log nval(z)

≤ 1
4

The probability that either not all elements are covered or the obtained solution has value
larger than 12 log n times the optimal value is at most 1/n2+1/4 ≤ 1/2 for all n ≥ 2. Thus
we only have to run the whole algorithm at most two times in expectation to actually get
a 12 log n-approximate solution.

47

Chapter 6

Satisfiability

The Satisfyability problem asks if a certain given Boolean formula has a satisfying
assignment, i.e., one that makes the whole formula evaluate to true. There is a related
optimization problem called Maximum Satisfiability. The goal of this chapter is to
develop a deterministic 3/4-approximation algorithm. We first give a corresponding ran-
domized algorithm which will then be derandomized.

We are given the Boolean variables X = {x1, . . . , xn}, where each xi ∈ {0, 1}. A literal
`i of the variable xi is either xi itself, called a positive literal, or its negation x̄i with truth
value 1−xi, called a negative literal. A clause is a disjunction C = (`1∨· · ·∨`k) of literals
`j of X; their number k is called the size of C. For a clause C let S+

C denote the set of its
positive literals; similarly S−C the set of its negative literals. Let C denote the set of clauses.
A Boolean formula in conjunctive form is a conjunction of clauses F = C1∧· · ·∧Cm. Each
vector x ∈ {0, 1}n is called a truth assignment. For any clause C and any such assignment
x we say that x satisfies C if at least one of the literals of C evaluates to 1.

The problem Maximum Satisfiability is the following: We are given a formula F
in conjunctive form and for each clause C a weight wC , i.e., a weight function w : C → N.
The objective is to find a truth assignment x ∈ {0, 1}n that maximizes the total weight of
the satisfied clauses. As an important special case: If we set all weights wC equal to one,
then we seek to maximize the number of satisfied clauses.

Now we introduce for each clause C a variable zC ∈ {0, 1} which takes the value one if
and only if C is satisfied under a certain truth assignment x. Now we can formulate this
problem as a mathematical program as follows:

Problem 6.1 Maximum Satisfiability

Instance. Formula F = C1 ∧ · · · ∧ Cm with m clauses over the n Boolean variables X =
{x1, . . . , xn}. A weight function w : C → N.

Task. Solve the problem

maximize val(z) =
∑
C∈C

wCzC ,

subject to
∑
i∈S+

C

xi +
∑
i∈S−C

(1− xi) ≥ zC C ∈ C,

zC C ∈ C,

xi ∈ {0, 1} i = 1, . . . , n.

48

The algorithm we aim for is a combination of two algorithms. One works better
for small clauses, the other for large clauses. Both are initially randomized but can be
derandomized using the method of conditional expectation, i.e., the final algorithm is
deterministic.

6.1 Randomized Algorithm

For each variable xi we define the random variable Xi that takes the value one with a
certain probability pi and zero otherwise. This induces, for each clause C, a random
variable ZC that takes the value one if C is satisfied under a (random) assignment and
zero otherwise.

Algorithm for Large Clauses

Consider this algorithm Randomized Large: For each variable xi with i = 1, . . . , n, set
xi = 1 independently with probability 1/2 and xi = 0 otherwise. Output x.

Define the quantity
αk = 1− 2−k.

Lemma 6.1. Let C be a clause. If size(C) = k then

E [ZC] = αk.

Proof. A clause C is not satisfied, i.e., zC = 0 if and only if all its literals are set to zero.
By independence, the probability of this event is exactly 2−k and thus

E [ZC] = 1 · Pr [ZC = 1] + 0 · Pr [ZC = 0] = 1− 2−k = αk

which was claimed.

Theorem 6.2. In expectation, the algorithm Randomized Large is a 1/2-approximation
algorithm for Maximum Satisfiability.

Proof. By linearity of expectation, Lemma 6.1, and size(C) ≥ 1 we have

E [val(Z)] =
∑
C∈C

wCE [ZC] =
∑
C∈C

wCαsize(C) ≥
1
2

∑
C∈C

wC ≥ 1
2
val(z′)

where (x′, z′) is an optimal solution for Maximum Satisfiability. We have used the
obvious bound val(z′) ≤

∑
C∈C wC .

Algorithm for Small Clauses

Maybe the most natural linear programming relaxation of the problem is:

maximize val(z) =
∑
C∈C

wCzC ,

subject to
∑
i∈S+

C

xi +
∑
i∈S−C

(1− xi) ≥ zC C ∈ C,

0 ≤ zC ≤ 1 C ∈ C
0 ≤ xi ≤ 1 i = 1, . . . , n.

49

In the sequel let (x∗, z∗) denote an optimum solution for this LP.
Consider this algorithm Randomized Small: Determine (x∗, z∗). For each variable

xi with i = 1, . . . , n, set xi = 1 independently with probability x∗i and xi = 0 otherwise.
Output x.

Define the quantity

βk = 1−
(

1− 1
k

)k

.

Lemma 6.3. Let C be a clause. If size(C) = k then

E [ZC] = βkz
∗
C .

Proof. We may assume that the clause C has the form C = (x1 ∨ · · · ∨ xk); otherwise
rename the variables and rewrite the LP.

The clause C is satisfied if x1, . . . , xk are not all set to zero. The probability of this
event is

1−Πk
i=1(1− x∗i) ≥ 1−

(∑k
i=1(1− x∗i)

k

)k

= 1−

(
1−

∑k
i=1 x∗i
k

)k

≥ 1−
(

1−
z∗C
k

)k

.

Above we firstly have used the arithmetic-geometric mean inequality, which states that
for non-negative numbers a1, . . . , ak we have

a1 + · · ·+ ak

k
≥ k
√

a1 · · · · · ak.

Secondly the LP guarantees the inequality x∗1 + · · ·+ x∗k ≥ z∗C .
Now define the function g(t) = 1− (1− t/k)k. This function is concave with g(0) = 0

and g(1) = 1− (1− 1/k)k which yields that we can bound

g(t) ≥ t(1− (1− 1/k)k) = tβk

for all t ∈ [0, 1].
Therefore

Pr [ZC = 1] ≥ 1−
(

1−
z∗C
k

)k

≥ βkz
∗
C

and the claim follows.

Theorem 6.4. In expectation, the algorithm Randomized Small is a 1−1/e-approximation
algorithm for Maximum Satisfiability.

Proof. The function βk is decreasing with k. Therefore if all clauses are of size at most k,
then by Lemma 6.3

E [val(Z)] =
∑
C∈C

wCE [ZC] ≥ βk

∑
C∈C

wCz∗C = βkval(z∗) ≥ βkval(z′),

where (x′, z′) is an optimal solution for Maximum Satisfiability. The claim follows
since (1− 1/k)k > 1/e for all k ∈ N.

50

3/4-Approximation Algorithm

Consider the algorithm Randomized Combine: With probability 1/2 run Randomized
Large otherwise run Randomized Small.

Lemma 6.5. Let C be a clause, then

E [ZC] =
3z∗C
4

.

Proof. Let the random variable B take the value zero if the first algorithm is run, one
otherwise. For a clause C let size(C) = k. By Lemma 6.1 and z∗C ≤ 1

E [ZC | B = 0] = αk ≥ αkz
∗
C .

and by Lemma 6.1
E [ZC | B = 1] ≥ βkz

∗
C .

Combining we have

E [ZC] = E [ZC | B = 0]Pr [B = 0] + E [ZC | B = 1]Pr [B = 1] ≥
z∗C
2

(αk + βk).

It is easy to see that αk + βk ≥ 3/2 for all k ∈ N.

Theorem 6.6. In expectation, the algorithm Randomized Combine is a 3/4-approximation
algorithm for Maximum Satisfiability.

Proof. This follows from Lemma 6.5 and linearity of expectation.

6.2 Derandomization

The notion of derandomization refers to “turning” a randomized algorithm into a deter-
ministic one (possibly at the cost of additional running time or deterioration of approxi-
mation guarantee). One of the several available techniques is the method of conditional
expectation.

We are given a Boolean formula F = C1∧· · ·∧Cm in conjunctive form over the variables
X = {x1, . . . , xn}. Suppose we set x1 = 0, then we get a formula F0 over the variables
x2, . . . , xn after simplification; if we set x1 = 1 then we get a formula F1.

Example 6.7. Let F = (x1 ∨ x2) ∧ (x̄1 ∨ x3) ∧ (x1 ∨ x̄4) where X = {x1, . . . , x4}.

x1 = 0 : F0 = (x2) ∧ (x4)
x1 = 1 : F1 = (x3)

Applying this recursively, we obtain the tree T (F) depicted in Figure 6.1. The tree
T (F) is a complete binary tree with height n+1 and 2n+1−1 vertices. Each vertex at level i
corresponds to a setting for the Boolean variables x1, . . . , xi. We label the vertices of T (F)
with their respective conditional expectations as follows. Let X1 = a1, . . . , Xi = ai ∈ {0, 1}
be the outcome of a truth assignment for the variables x1, . . . , xi. The vertex corresponding
to this assignment will be labeled

E [val(Z) | X1 = a1, . . . , Xi = ai] .

51

F

F0 F1

x1 = 0 x1 = 1

T (F)

T (F0) T (F1)

level 0

level 1

Figure 6.1: Derandomization tree for a formula F .

If i = n, then this conditional expectation is simply the total weight of clauses satisfied by
the truth assignment x1 = a1, . . . , xn = an.

The goal of the remainder of the section is to show that we can find deterministically
in polynomial time a path from the root of T (F) to a leaf such that the conditional
expectations of the vertices on that path are at least as large as E [val(Z)]. Obviously, this
property yields the desired: We can construct determistically a solution which is at least
as good as the one of the randomized algorithm in expectation.

Lemma 6.8. The conditional expectation

E [val(Z) | X1 = a1, . . . , Xi = ai]

of any vetex in T (F) can be computed in polynomial time.

Proof. Consider a vertex X1 = a1, . . . , Xi = ai. Let F ′ be the Boolean formula obtained
from F by setting x1, . . . , xi accordingly. F ′ is in the variables xi+1, . . . , xn.

Clearly, by linearity of expectation, the expected weight of any clause of F ′ under any
random truth assignment to the variables xi+1, . . . , xn can be computed in polynomial
time. Adding to this the total weight of clauses satisfied by x1, . . . , xi gives the answer.

Theorem 6.9. We can compute in polynomial time a path from the root to a leaf in T (F)
such that the conditional expectation of each vertex on this path is at least E [val(Z)].

Proof. Consider the conditional expectation at a certain vertex X1 = a1, . . . , Xi = ai for
setting the next variable Xi+1. We have that

E [val(Z) | X1 = a1, . . . , Xi = ai]
= E [val(Z) | X1 = a1, . . . , Xi = ai, Xi+1 = 0]Pr [Xi+1 = 0]

+ E [val(Z) | X1 = a1, . . . , Xi = ai, Xi+1 = 1]Pr [Xi+1 = 1] .

We show that the two conditional expectations with Xi+1 can not be both strictly smaller
than E [val(Z) | X1 = a1, . . . , Xi = ai]. Assume the contrary, then we have

E [val(Z) | X1 = a1, . . . , Xi = ai]
< E [val(Z) | X1 = a1, . . . , Xi = ai] (Pr [Xi+1 = 0] + Pr [Xi+1 = 1])

which is a contradiction since Pr [Xi+1 = 0] + Pr [Xi+1 = 1] = 1.
This yields the existence of such a path can by Lemma 6.8 it can be computed in

polynomial time.

The derandomized version of a randomized algorithm now simply executes these proofs
with the probability distribution as given by the randomized algorithm.

52

Chapter 7

Facility Location

The Facility Location problem was popular in operations research in the 1960s but no
constant factor approximation algorithms were known until 1997. The discovery of these
is due to LP-rounding techniques and the primal-dual schema. In this section we present
a 3-approximate primal-dual algorithm.

Facility Location is the following problem: We are given a complete bipartite graph
G = (V,E) with bipartition V = F ∪ C, where F refers to the set of (potential) facilities
and C to the set of cities. Establishing a facility i causes opening cost fi. Attaching city
j to an (opened) facility i yields connection cost cij . We assume that the cij satisfy the
triangle inequality. So, now, the problem is to find a subset I ⊆ F of facilities to open
and a mapping a : C → I for assigning cities to open facilities in a way that each city is
connected to at least one facility as to minimize the total opening and connection cost.
We write this task as a mathematical program, where yi indicates if facility i is open and
xij if city j is assigned to facility i.

Problem 7.1 Facility Location

Instance. Complete bipartite graph G = (F ∪ C,E), weight functions f : F → N, and
c : E → N.

Task. Solve the problem

minimize val(x, y) =
∑
i∈F

∑
j∈C

cijxij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij ≥ 1 j ∈ C “each city connects”

yi − xij ≥ 0 i ∈ F, j ∈ C “facility must be open”
xij ∈ {0, 1}
yi ∈ {0, 1}.

The problem Facility Location is NP-hard. Here we will show the following main
result.

Theorem 7.1. There is a 3-approximation algorithm for Facility Location that runs
in O (m log m) time, where m = |F ||C|.

An obvious way of relaxing this problem is to replace the constraints xij ∈ {0, 1} and

53

yi ∈ {0, 1} by 0 ≤ xij ≤ 1 and 0 ≤ yi ≤ 1 respectively. For sake of completeness:

minimize val(x, y) =
∑
i∈F

∑
j∈C

cijxij +
∑
i∈F

fiyi (P)

subject to
∑
i∈F

xij ≥ 1 j ∈ C

yi − xij ≥ 0 i ∈ F, j ∈ C

0 ≤ xij ≤ 1
0 ≤ yi ≤ 1.

The dual of this LP can be written as:

maximize val(α, β) =
∑
j∈C

αj (D)

subject to αj − βij ≤ cij i ∈ F, j ∈ C∑
j∈C

βij ≤ fi i ∈ F

αj ≥ 0 j ∈ C

βij ≥ 0 i ∈ F, j ∈ C.

7.1 Complementary Slackness

One of the important steps in designing a primal-dual algorithm is to get an intuition what
the dual LP “is doing”. This usually induces a schema how dual variables can “pay” for
primal ones.

We begin with a recapitulation of the complementary slackness conditions, which refers
to Corollary 2.13 of the strong duality theorem and gives one way of proving optimality:

Corollary 7.2. Let max{c>x : Ax ≤ b, x ≥ 0} and min{y>b : y>A ≥ c, y ≥ 0} be
a primal-dual pair and let x and y be respective feasible solutions. Then the following
statements are equivalent:

(1) x and y are both optimum solutions.

(2) c>x = y>b.

(3) (y>A− c)>x = 0.

(4) y>(b−Ax) = 0.

For us, the third and the fourth condition are particularly interesting as they relate
the primal and dual variables at optimal points. The third is called primal complemen-
tary slackness, the forth dual complementary slackness. One way of looking at this dual
condition is to say that “either yi = 0 or bi − (Ax)i = 0”, i.e., “if the dual variable yi is
not zero, then the corresponding primal constraint is satisfied with equality”. Similarly
for the primal condition.

Now we return to Facility Location. Assume for the moment that there is an
integral solution, say (x, y), which is optimal for (P). This solution corresponds to a set
I ⊆ F and a mapping a : C → I. Thus, under this solution, yi = 1 if and only if i ∈ I and
xij = 1 if and only if a(j) = i. Let (α, β) be an optimal solution for (D).

Now, for (P) and (D) the primal-dual complementary slackness conditions are:

54

(1) For all i ∈ F and j ∈ C: either xij = 0 or αj − βij = cij .

(2) For all i ∈ F : either yi = 0 or
∑

j∈C βij = fi.

(3) For all i ∈ C: either αj = 0 or
∑

i∈F xij = 1.

(4) For all i ∈ F and j ∈ C: either βij = 0 or yi = xij .

By (2) each open facility i must be “paid” by the dual variables βij , i.e.,∑
j∈C

βij = fi.

By condition (4), if facility i is open, but city j is not assigned to it, i.e., a(j) 6= i, then
we must have yi 6= xij and thus βij = 0. This means that no city contributes to a facility
it is not connecting to.

By condition (1), if for some city j and facility i we have a(j) = i then we must have
αj − βij = cij . Thus we can think of αj = βij + cij as the total price paid by city j, where
βij is its opening cost share and cij its connection cost (paid exclusively).

7.2 Primal-Dual Algorithm

Here we apply the primal-dual schema, i.e., we carry out the following steps: Relax the
primal slackness conditions and use these for an algorithm which ensures dual feasibility
and improves primal optimality.

Relaxing the Slackness Conditions

We will relax the primal slackness conditions as follows: The cities are partitioned into
two sets, directly connected and indirectly connected. Only directly connected cities will
pay for opening facilities, i.e., βij can be non-zero only if j is a directly connected city and
a(j) = i. For an indirectly connected city j, we relax the primal slackness condition to

1
3
ca(j)j ≤ αj ≤ ca(j)j .

So, with the above intuition this reads: The total price paid by an indirectly connecting
city is at most its direct connection cost, but at least one third of this cost. All other
primal conditions are maintained, i.e., for a directly connectiong city j we have

αj − βa(j)j = ca(j)j ,

and for each open facility i, ∑
j:a(j)=i

βij = fi.

Algorithm

The algorithm consists of two phases. In the first phase, the algorithm operates in a
primal-dual fashion. It finds a dual feasible solution and also determines a set of tight
edges and temporarily open facilities Ft. In the second phase the algorithm chooses a
subset I ⊆ Ft of facilities to open permanently, and a mapping a : C → I.

55

Phase 1. We would like to find as large a dual solution as possible. This motivates the
following underlying process: Each city j raises its dual variable αj until it gets
connected to an open facility, i.e., until αj = cij for some open facility i. All other
primal and dual variables simply respond to this change, trying to maintain feasibility
or satisfying complementary slackness conditions.

A notion of time is defined in this phase, so that each event can be associated with
the time at which it happened; the phase starts at time zero. Initially each city is
defined to be unconnected. Throughout this phase, the algorithm raises the dual
variable αj for each unconnected city at unit rate, i.e., αj will grow by one in unit
time. When αj = cij for some edge ij, the algorithm will declare this edge to be
tight. Henceforth, the dual variable βij will also be raised uniformly, thus ensuring
that the constraint αj − βij ≤ cij in (D) is never violated. At this point in time the
connection cost are paid and the variable βij goes towards paying for the opening
cost of facility i. Each edge ij such that βij > 0 is called special.

Facility i is said to be paid for if
∑

j βij = fi. If so, the algorithm declares the facility
temporarily open, i.e., i ∈ Ft. Furthermore, all unconnected cities having tight edges
to this facility are declared connected and facility i is declared the connecting witness
for each of these cities. (Notice that the dual variables αj of these cities are not raised
any more.) In the future, as soon as an unconnected city j gets a tight edge to i,
j will also be declared connected and i the connection witness for j. (Notice that
βij = 0 and the edge ij is not special.) When all cities are connected, the first phase
terminates. If several events happen simultaneously, the algorithm executes them in
arbitrary order.

As a side remark, at the end of this phase, a city may have paid towards temporarily
opening several facilities. However, we want to ensure that a city pays only for the
facility that it is eventually connected to. This is ensured in the second phase, which
chooses a set of temporarily open facilities for opening permanently.

Phase 2. Let Ft denote the set of temporarily open facilities and T denote the subgraph
of G induced by all special edges. Let T 2 denote the graph that has an edge uv if
and only if there is a path of length at most two between u and v in T , and let H
be the subgraph of T 2 induced by Ft. Find any maximal independent set in H, say
I. All facilities in the set I are declared open.

For city j, define Fj = {i ∈ Ft : ij is special}. Since I is an independent set, at most
one of the facilities in Fj is opened. If there is a facility i ∈ Fj that is opened, then
set a(j) = i and declare the city j directly connected. Otherwise, consider the tight
edge i′j such that i′ was the connecting witness for j. If i′ ∈ I, again set a(j) = i′

and declare the city j directly connected (notice that in this case βi′j = 0). In the
remaining case that i′ 6∈ I, let i be any neighbor of i′ in the graph H such that i ∈ I.
Set a(j) = i and declare city j indirectly connected.

The set I and the mapping a : C → I define a primal integral solution: xij = 1 if and
only if a(j) = i and yi = 1 if and only if i ∈ I. The values for αj and βij obtained at the
end of the first phase form a dual feasible solution.

Analysis

The crucial result for the analysis, which directly gives the approximation guarantee, is
the following.

56

Theorem 7.3. The primal and dual solutions constructed by the algorithm satisfy∑
i∈F

∑
j∈C

cijxij + 3
∑
i∈F

fiyi ≤ 3
∑
j∈C

αj .

We will show how the dual variables αj pay for the primal costs of opening facilities
and connecting cities to facilities. Denote by αf

j and αc
j the contributions of city j to these

two costs respectively; αj = αf
j +αc

j . If j is indirectly connected then αf
j = 0 and αc

j = αj .
If j is directly connected then the following must holds:

αj = cij + βij ,

where i = a(j). Now let αf
j = βij and αc

j = cij .

Lemma 7.4. Let i ∈ I then ∑
j:a(j)=i

αf
j = fi.

Proof. Since i is temporarily open at the end of phase one, it is completely paid for, i.e.,∑
j:ij is special

βij = fi.

The critical observation is that each city j that has contributed to fi must be directly
connected to i. For each such city, αf

j = βij . Any other city j′ that is connected to facility

i must satisfy αf
j′ = 0.

Corollary 7.5.
∑

i∈I fi =
∑

j∈C αf
j .

Recall that αf
j was defined to be 0 for indirectly connected cities. Thus, only the

directly connected cities pay for the cost of opening facilities.

Lemma 7.6. For an indirectly connected city j, cij ≤ 3αc
j, where i = a(j).

Proof. Let i′ be the connecting witness for city j. Since j is indirectly connected to i, the
edge ii′ must be an edge in H. In turn, there must be a city, say j′, such that ij and
i′j′ are both special edges. Let t1 and t2 be the times at which i and i′ were declared
temporarily open during phase 1.

Since edge i′j′ is tight, αj ≥ ci′j . We will show that αj ≥ cij′ and αj ≥ ci′j′ . Then,
the lemma will follow by using the triangle inequality.

Since edges i′j′ and ij′ are tight, αj′ ≥ cij′ and αj′ ≥ ci′j′ . Since both these edges are
special, they must both have gone tight before either i or i′ is declared temporarily open.
Consider the time min{t1, t2}. Finally, since i′ is the connecting witness for j, αj ≥ t2.
Therefore αj ≥ αj′ , and the required inequalities follow.

Proof of Theorem 7.3. For a directly connected city j, cij = αc
j ≤ 3αc

j , where i = a(j).
With Lemma 7.6 we get ∑

i∈F

∑
j∈C

cijxij ≤ 3
∑
j∈C

αc
j .

Adding to this the equality given in Corollary 7.5 multiplied by 3 yields the claim.

57

Running Time

Clearly, the total number of edges of the complete bipartite graph G = (F ∪ C,E) is
m = |F ||C|. For the implementation of the algorithm sort all the edges by increasing cost.
This is the ordering in which they go tight. For each facility i, we maintain the number of
cities that are currently contributing to it, and the anticipated time ti, at which it would
be completely paid for if no other event happens on the way. Initially all ti’s are infinite
and each facility has 0 cities contributing to it. The ti’s are maintained in a binary heap,
so we can update each one and find the current minimum in O (log |F |) time. Two types
of events happen and they lead to the following updates:

An edge ij goes tight. If facility i is not temporarily open, then it gets one more city
contributing towards its cost. The corresponding amount can easily be computed.
Thus, the anticipated time for facility i to be paid for can be computed in constant
time. The heap can be updated in O (log |F |) time.

If facility i is already temporarily open, city j is declared connected, and αj is not
raised anymore. For each facility i′ that was counting j as a contributor, we need
to decrease the number of contributors by 1 and recompute the anticipated time at
which it gets paid for.

Facility i is completely paid for. In this event, i will be declared temporarily open,
and all cities contributing to i will be declared connected. For each of these cities,
we will execute the second case of the previous event, i.e., update facilities that they
were contributing towards.

Observe that each edge ij will be considered at most twice. First, when it goes tight,
and second when city j is declared connected. For each consideration of this edge, we will
do O (log |F |) work. This discussion of the running time together with Theorem 7.3 yields
Theorem 7.1.

Tight Example

The following familty of examples shows that the analysis of the algorithm is tight.

Example 7.7. There are two facilities with opening cost f1 = ε and f2 = (n+1)ε. There
are n cities where city one is at distance one from facility one, but the remaining cities are
at distance three from it, and each city is at distance one from facility two. The optimal
solution is to open facility two at total cost (n + 1)ε + n. The algorithm will open facility
one and connect all cities to it at total cost ε + 1 + 3(n− 1).

58

