Combinatorial Optimization

Exercise 1 (Degrees)

Let G = (V, E) be an undirected graph on n vertices and m edges. Show that

- (1) $\sum_{v \in V} \deg(v) = 2m$, and
- (2) the number of vertices with odd degree is even.

Exercise 2 (Cycles in Graphs)

Given a directed graph G on n vertices and m edges, say, show that there is a linear-time algorithm, i.e., the running time is O(n+m), that finds a cycle in G or decides that none exists.

Exercise 3 (Running Time)

Suppose we are given a graph G=(V,E) on n vertices and m edges with a weight function $w:E\to\mathbb{N}$, where we assume that this function is given as a vector $w=(w_1,\ldots,w_m)$. We are further given an algorithm that solves a certain problem and takes running time proportional to n^2W , where $W=\sum_{e\in E}w(e)$. Is this a polynomial time algorithm?

Exercise 4 (Job Assignment)

The job assignment problem from the introduction

minimize
$$\max_i \sum_j x_{ij}$$
 subject to
$$\sum_{i \in S_j} x_{ij} = p_j$$

$$x_{ij} \geq 0 \qquad i = 1, \dots, m, \ j = 1, \dots, n$$

is almost formulated as an LP, except that "max" appears in the objective function. Can you formulate the problem as an LP?

Exercise 5 (Polyhedra)

Prove Lemma 2.2 from the lecture: Let $P = \{x : Ax \leq b\}$ be a polyhedron and $F \subseteq P$. Then the following statements are equivalent:

- (1) F is a face of P.
- (2) There is a vector c with $\delta := \max\{c^{\top}x : x \in P\} < \infty$ and $F = \{x \in P : c^{\top}x = \delta\}$.
- (3) $F = \{x \in P : A'x = b'\} \neq \emptyset$ for some subsystem $A'x \leq b'$ of $Ax \leq b$.

Hint: To show that (2) implies (3) let c be a vector such that $c^{\top}x$ is finite for every $x \in P$. Then consider the *maximal* subsystem $A'x \leq b'$ of $Ax \leq b$ such that A'x = b' for all $x \in F$.