Albert-Ludwigs-Universität Freiburg Institut für Informatik Prof. Dr. Susanne Albers Dr. Alexander Souza

Combinatorial Optimization

Exercise 1 (Fractional Knapsack)

Let $c, w \in \mathbb{N}^n$ be non-negative integral vectors with

$$\frac{c_1}{w_1} \ge \frac{c_2}{w_2} \ge \dots \ge \frac{c_n}{w_n}$$

and let

$$k = \min\left\{j \in \{1, \dots, n\} : \sum_{i=1}^{j} w_i > W\right\}.$$

Show that an optimum solution for the FRACTIONAL KNAPSACK problem is given by

$$x_j = 1$$
 for $j = 1, ..., k - 1$,
 $x_j = \frac{W - \sum_{i=1}^{k-1} w_i}{w_k}$ for $j = k$, and
 $x_j = 0$ for $j = k + 1, ..., n$.

Exercise 2 (Greedy Knapsack)

Construct an instance for which the approximation-guarantee 1/2 of the GREEDY algorithm for KNAPSACK is achieved.

Exercise 3 (Greedy Set Cover)

Construct an instance for which the approximation-guarantee H_n of the GREEDY algorithm for SET COVER is achieved.

Exercise 4 (Cardinality Vertex Cover)

Let G = (V, E) be a graph. A subset $C \subseteq V$ is called a *vertex cover* if each edge $e \in E$ is incident to a vertex $v \in C$. The problem CARDINALITY VERTEX COVER asks to find a vertex cover with as few vertices as possible. This problem is NP-hard.

Show that the following simple algorithm is a 2-approximation: Compute a matching $M \subseteq E$ in G which is maximal with respect to inclusion and include all the vertices v that are incident to an edge $e \in M$ in the cover C.