Energy Efficient Algorithms Assignment 1

Hand in on Monday, May 19, 2008, during the lecture.

Exercise 1: Two-State Power-Down. Consider the two-state power-down problem with the low-power state *sleep* and the high-power state *active*. The transition from the active state to the sleep state and back to the active state consumes D energy units. Unlike in the lecture, we now assume that the sleep state accounts for ϵ energy units per time unit ($0 < \epsilon < 1$). During the active state the energy consumption is still one energy unit per time unit.

- a) What is the optimal strategy for the offline scenario of this problem?
- b) On the lines of algorithm PD-2 given in the lecture formulate a corresponding online algorithm A for this problem. Show that A is (2ϵ) -competitive.

Exercise 2: Lower Bound for Two-State Power-Down. Show that for the power-down problem given in Eexercise 1 no deterministic online algorithm can achieve a competitive ratio smaller than $(2 - \epsilon)$.

Exercise 3: Randomized Power-Down. Consider the class of algorithms RAND that is defined as follows. Each algorithm $A \in RAND$ is defined by a parameter α and a probability p ($0 \le p \le 1, 0 \le \alpha \le 1$). With probability p, A powers down after $\alpha \cdot D$ time units in each idle period. Otherwise, A powers down after D time units in each idle period. Hence, all power down times of A depend on a single initial random choice.

- a) Find the algorithm having the best competitive ratio in RAND with $\alpha = 1/2$.
- b) Use your favorite programming language to check numerically whether there is a better choice for α by plotting the graph of the best competitive ratio with respect to α for each $0 \le \alpha \le 1$.

Exercise 4: Minimax-Principle. Use the Minimax-Principle to prove a lower bound greater than 1.5 on the competitive ratio of the algorithms in *RAND* with $\alpha = 1/2$. Note that using the Minimax-Principle, it is actually possible to show that the algorithm found in Exercise 3 is optimal.