
Albert-Ludwigs-Universität Freiburg, April 28, 2008
Institut für Informatik Summer Term 08
Prof. Dr. Susanne Albers
Sonja Lauer, Tim Nonner

Energy Efficient Algorithms

Assignment 1

Hand in on Monday, May 19, 2008, during the lecture.

Exercise 1: Two-State Power-Down. Consider the two-state power-down problem
with the low-power state sleep and the high-power state active. The transition from the
active state to the sleep state and back to the active state consumes D energy units. Unlike
in the lecture, we now assume that the sleep state accounts for ǫ energy units per time
unit (0 < ǫ < 1). During the active state the energy consumption is still one energy unit
per time unit.

a) What is the optimal strategy for the offline scenario of this problem?

b) On the lines of algorithm PD–2 given in the lecture formulate a corresponding online
algorithm A for this problem. Show that A is (2 − ǫ)-competitive.

Exercise 2: Lower Bound for Two-State Power-Down. Show that for the power-
down problem given in Eexercise 1 no deterministic online algorithm can achieve a com-
petitive ratio smaller than (2 − ǫ).

Exercise 3: Randomized Power-Down. Consider the class of algorithms RAND
that is defined as follows. Each algorithm A ∈ RAND is defined by a parameter α and
a probability p (0 ≤ p ≤ 1, 0 ≤ α ≤ 1). With probability p, A powers down after α · D
time units in each idle period. Otherwise, A powers down after D time units in each idle
period. Hence, all power down times of A depend on a single initial random choice.

a) Find the algorithm having the best competitive ratio in RAND with α = 1/2.

b) Use your favorite programming language to check numerically whether there is a
better choice for α by plotting the graph of the best competitive ratio with respect
to α for each 0 ≤ α ≤ 1.

Exercise 4: Minimax-Principle. Use the Minimax-Principle to prove a lower bound
greater than 1.5 on the competitive ratio of the algorithms in RAND with α = 1/2. Note
that using the Minimax-Principle, it is actually possible to show that the algorithm found
in Exercise 3 is optimal.


