
Report Seminar
Algorithm Engineering

G. S. Brodal, R. Fagerberg, K. Vinther:
“Engineering a Cache-Oblivious Sorting Algorithm”

Iftikhar Ahmad

Chair of Algorithm and Complexity
Department of Computer Science
Albert Lüdwig University Freiburg

razmian 1167@yahoo.com



1 Introduction

In this chapter the need for the cache oblivious algorithm is described which is
followed by the working of two of the cache oblivious sorting algorithms- Funnel
Sort and Lazy Funnel Sort. The drawbacks of Funnel Sort are discussed and how
these are overcome by Lazy Funnel Sort are described. At the end the problem
statement of the research paper is highlighted.

1.1 Algorithm Analysis:

One of the most important considerations in the design of the algorithm is the
efficiency. There are three general ways to measure the efficiency of algorithms.
These include experimental analysis, average case and worst case analysis. The
last two approaches are purely theoretical and do not consider the real world
scenarios and does not consider factors that may affect the running time of algo-
rithm. But the advantage of theoretical analysis is that it analyzes the algorithm
independent of the hardware architecture on which the algorithm will be imple-
mented, thus providing an insight into running time of algorithm independent
of the hardware architecture. Hence it becomes really difficult to rely on single
model for algorithm complexity. So we have to rely on experimental results as
well to gauge the effectiveness of the algorithm in real world scenario.

When we consider the actual running time of an algorithm, then the memory
system of computer has significant effect on the running time. It means the
memory access time plays an important role in overall running time of algorithm,
the latency associated with transfer of data from higher level to lower level, for
example from Hard Disk to RAM or from RAM to Cache. In order for the
algorithm to perform better in real world scenario it has to minimize the latency
involved. Though the CPU speed is increasing following the Moore′sLaw (The
number of transistor on single chip doubles every eighteen months) , the same
performance increase in the RAM is not visible. As per a study [1] the increase
in speed of CPU and RAM is 55% and 7% respectively per year and this results
in wide CPU-RAM performance gap. The figure below illustrates the gap more
illustratively:

2



Figure 1: CPU-RAM Performance Gap

For more precise analysis of algorithms, the computational models must consider
the memory architecture and factors such as hierarchy of memory, latency etc.
We will discuss the model later but before that we need to understand the
memory hierarchy of simple computer.

1.2 Ideal Cache Model

Let us consider a simple computer with two level of memory hierarchy as shown
in the figure 2 below:

Figure 2: A Simple Computer with Two Level of Memory Hierarchy

We assume that Main Memory (RAM) is of arbitrarily large size, cache is par-
titioned into small blocks called CacheLine and each cache line consists of B

3



consecutive locations. Data from main memory to cache is transferred in form of
blocks such that size of each block is B. The total size of cache is M so there can
be a total of M/B cache lines. We work on assumption of tall cache, which means
that M≥B2. A cache hit occurs whenever data referenced by CPU is present in
the cache and if the data is not present in cache and it has to be fetched from
main memory then it is referenced as cache miss. We also assume that there is
an optimal offline strategy for cache line replacement.

As for as the complexity in ideal cache model is concerned, there are two ap-
proaches:

– Work Complexity, W(n), which is conventional running time in RAM
– Cache Complexity, Q(n, M, B), the number of cache misses as function of

M and B.

where

n = input size

1.3 Cache Aware Vs Cache Oblivious Algorithms

Cache Aware and Cache Oblivious Algorithms are two different attempts that
have been made to reduce the gap between actual running and theoretical run-
ning time of algorithms. The cache aware algorithms are based on parameters
that can be tuned to optimize the cache complexity, these algorithms have prior
knowledge about the size of cache and block etc and in practice are designed
to for two known level of memory hierarchy. This makes them sub optimal for
other memory levels and they often do not perform well.

In contrast to Cache Aware algorithms, Cache Oblivious algorithms have no
prior information about the hardware parameters like cache size etc.

Advantages of Cache Oblivious Algorithms:

– The algorithm performs significantly better even without having any prior
information about characteristics of memory hierarchy.

– There is no need to hardwire the memory characteristics in algorithm.
– Optimizing algorithm for one unknown level optimizes it for all levels.
– Cache Oblivious Algorithms are more robust and portable and thus are useful

for development of software libraries.

Design Technique for Cache Oblivious Algorithm: One of the main tech-
niques used to design cache oblivious algorithm is Divide and Conquer [2]. As
like in traditional divide and conquer approach, the problem is divided repeated-
ly into small problems till a base case is achieved. In cache oblivious algorithms
base case is reached when the sub problem is easily solvable, that is the sub
problem should not cause cache miss and should fit in cache.

4



1.4 Cache Oblivious Sorting Algorithms:

Sorting algorithm is one of the most comprehensively researched topic in classical
computer science. Sorting is being used in many of the graph, geometric and
scientific applications as sub-routine. This means that efficient sorting algorithms
will obviously increase the efficiency of the whole application. There are several
Cache Oblivious Sorting algorithms presented; most notable of them are Funnel
Sort[3], Lazy Funnel Sort[4] and Distribution based sorting algorithm[3].

Funnel Sort: Funnel Sort was the first cache oblivious sorting algorithm pre-
sented by Frigo et al[3]. The asymptotic working complexity of funnel sort is
O(nlogn) where as if tall cache assumption holds then cache complexity is O(N/B
logM/BN/B). The K-Funnel form the basis for the Funnel Sort.

A K-Funnel merges K3 elements at single invocation and consists of
√
K funnels

at bottom; each bottom funnel is connected to top funnel via
√
K buffers. Figure

3 shows a 16-funnel with 16 input streams.

Figure 3: A 16-funnel with 16 input streams

Funnel Sort is laid in memory via van Emde Boas (vEB) layout; it means that
first top tree R is laid out in memory followed recursively by B0, L0, B1 and so
on. The buffer size (B0, B1, B2, B3) is double than that of the input streams to
accommodate the output arising from there. For initial invocation there must
be K2 elements in input buffer but as the merging progresses there can be lesser

5



and lesser elements. If at some instance there are not sufficient input elements
to satisfy the K3 condition then it simply outputs what is there.

Complexity of Funnel Sort:
The cache complexity of funnel sort is O(N/B logM/BN/B)
Where
N = Input size
M = Size of Cache
B = Size of Block (line)
N/B = Total number of blocks transferred from higher level memory to lower
level, so we have N/B blocks in cache to sort, similarly N/B can also be the
maximum number of cache misses.

Drawbacks of Funnel Sort:
Some of the drawbacks of Funnel Sort include:

– In practice it is not always possible to split K-Funnel into
√
K bottom fun-

nels, it may lead to rounding errors.
– The flow of data is not efficient as the both the buffers must be filled before

a merge occurs (except for the last when there is no more input stream
available).

– vEB layout performs well for binary trees but does not perform well for
complex data structures.

Lazy Funnel Sort: In an attempt to eliminate the drawbacks of Funnel Sort,
a variant of Funnel Sort called Lazy Funnel sort was introduced[4]. Lazy Funnel
sort is based on binary mergers which takes two input streams as input and
deliver the output as merged sorted stream. Invocation of merger occurs through
a recursive procedure which ensures that either the output buffer is full or both
input streams are exhausted. The algorithm is given below:

ProcedureFill(v)
while out-buffer not full

if left in-buffer empty
Fill(left child)

if right in-buffer empty
Fill(right child)

perform one merge step

The procedure Fill() checks the emptiness of buffers rather than the fullness as
in the case of Funnel Sort, and perform one merge step afterword.

In Lazy Funnel sort, K-merger is the basic data structure used. A K-merger is
perfect binary tree with K − 1 binary mergers and output buffer at the root

6



of size Kd, where d≥1. The following figure shows a 16-merger with 15 binary
mergers.

Figure 4: 16-Merger with 15 binary mergers.

For sorting N elements, lazy funnel sort recursively sort N1/d segments each of
size N1−1/d. N1/d mergers are used for merging process.

The lazy Funnel Sort removes the drawbacks of Funnel Sort, for example the need
to have

√
K bottom funnels is replaced by binary mergers, this also provide an

easy and efficient implementation using vEB layout which is best in representing
binary trees.

1.5 Problem Statement

To explore a number of implementation issues and parameter choices for cache
oblivious sorting algorithm and settle the best choices through experiments.

7



2 Engineering the Algorithm

In this chapter, the choice for the algorithm is made, then it is discussed how
the said algorithm can be optimized by tuning different parameter choices. First
it is discussed which algorithm is best choice for tuning and then steps for the
tuning are discussed.

2.1 Methodology:

First the concentration will be on selecting an optimal algorithm for cache obli-
vious sorting. After the selection of algorithm, the fine tuning of the algorithm
will be conducted by varying different parameter values and examining its run-
ning time. The best parameter choices will then be used to construct the most
optimal sorting algorithm. After the construction of most optimal cache oblivious
sorting algorithm, it will be tested against a number of present day algorithms
and the running time will be observed on different hardware architectures. C++
was used as the delvelopment language. Figure 5 provides details of different
hardware architectures used.

Figure 5: Specification of Machines.

2.2 Selecting Cache Oblivious Sorting Algorithm:

There are three approaches for cache oblivious sorting algorithm, namely Funnel
Sort, Lazy Funnel Sort and Distribution based Algorithm. All the three have
same optimal bound O(N/B logM/BN/B) but the fact is that Funnel Sort and
Distribution based Algorithms are structurally more complex than Lazy Funnel
Sort, so Lazy Funnel Sort is the algorithm selected based on the structural
simplicity.

8



2.3 Optimizing Lazy Funnel Sort:

To optimize Lazy Funnel Sort some of its parameters and design issues can be
tuned to get optimum results, some of these choices include:

– K-Merger Structure, How should the funnel be laid out in memory?
– Degree of Basic Merger, Is binary merger the optimum choice?
– Parameter α and d?
• α and d are variables that effect the output buffer size α Kd

K-Merger Structure: The optimal choice to represent funnel in memory hap-
pened to be vEB layout, similarly best results were obtained when recursive
invocation was used instead of iterative method. Further the pointer based in-
vocation produced better results than implicit navigation.

Degree of Basic Merger: The experiments showed that instead of using two
way basic mergers, four way merger produced better results. The obvious reason
for this is that four way mergers eliminate every other level in tree and thus
reducing the overall flow of data.

Parameter α and d: Experiments were performed to find the optimum choice
for α and d. Different combinations were checked for d = [1.5;3] and α= [1;40].
The optimum results reflected from the experiments were α ≈ 16, d ≈ 2.5

2.4 Implementation of Lazy Funnel Sort:

After performing the experiments to find the optimal choices for different design
and parameter choices, the optimum Lazy Funnel Sort was implemented. As the
original version of Lazy Funnel Sort uses binary merger so it was decided to
implement two version FunnelSort2 and FunnelSort4 for binary and 4 way basic
merger respectively with the following values:

– Recursive implementation of pointer based vEB layout.
– (α,d) = (16, 2)

2.5 Selecting Competitors for Lazy Funnel Sort:

In order to measure the efficiency of the optimized lazy funnel sort, it is desired
to find its competitiveness with some of the currently used sorting algorithms.
The competitors were selected form wide range of sorting algorithms that covers
the standard QuickSort algorithm to cache aware sorting algorithms.

The competitors selected are:

9



– Quick Sort implementation.
• std::sort, for STL library of GCC v 3.2 (GCC)
• std::sort, for STL library of Intel C++ v 7.0 (Dink)
• Authors own implementation based on Bentley and McIlroy (Mix)

– Cache Aware Sorting Algorithm
• TPIE sorting routine AMI SORT
• R-merge
• msort-c
• msort-m

TPIE is library for external memory computation and are the algorithms are
highly optimized. R-merge is also a cache aware algorithm. The other cache
aware algorithms selected are msort-c and msort-m [5].

10



3 Experiments and Results:

3.1 Experimental setup:

The experiments were performed on entire data being in RAM as well as on
inputs residing on disk. The experiments were performed 21 times and median
was reported. In external memory the experiments were performed only once.

3.2 Results:

Lazy Funnel Sort Vs QuickSort: Lazy Funnel Sort performs better on small
input sizes in RAM but looses to GCC QuickSort by 10-40% but on larger input
sizes the gain ratio of lazy funnel sort is almost the same against the competi-
tors on three architectures. The two architectures where Lazy Funnel Sort was
outperformed by GCC were MIPS 10000 and Pentium 4. The justification for
the better performance of GCC on MIPS is that MIPS has slow processor speed
and Pentium 4 is using PC800 bus which causes a delay in access time to RAM.

Lazy Funnel Sort Vs Cache Aware Sorting Algorithms: Lazy Funnel
Sort performs better against two of the cache aware sorting algorithms msort-c
and msort-m. Against R-merge Lazy Funnel Sort performs better on all archi-
tectures except MIPS. The obvious reason for this is the fact that MIPS is RISC
based architecture having large number of registers, something which R-merge
is designed to exploit.

Similarly for the experiments performed on disk, TPIE leads the way. Funnel-
Sort is second and performs better than GCC. The performance gain over GCC
increases as the input size grows.

11



Figure 6: Results for experiments performed on Pentium III

The graphs can be viewed in the AnnexureA

3.3 Conclusion:

A careful implementation of Lazy Funnel Sort performs better in most of the
experiments. It was also observed that in situation when Lazy Funnel Sort was
outperformed by the competitors it was not by high margin and Lazy Funnel Sort
was second best. Similarly Lazy Funnel Sort was also competitive on both RAM
and disk and was the best algorithm to adapt to changes in memory hierarchy.

12



4 References

[1] Frederik Ronn, Cache-Oblivious Searching and Sorting, Master’s Thesis, De-
partment of Computer Science, University of Copenhagen, 2003

[2] E. Demaine, Cache-Oblivious Algorithms and Data Structures, Preliminary
lecture notes - handed out at the EFF Summer School on Massive Data Sets.
June 27-July 1, BRICS, University of Aarhus.

[3] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science,pages
285-297. IEEE Computer Society Press, 1999.

[4] G. S. Brodal and R. Fagerberg, Cache-Oblivious Distribution Sweeping, Pro-
ceedings of the 29th International Colloquium on Automata, Languages, and
Programming, Lecture Note in Computer Science 2380, Springer-Verlag (2002),
426-438.

[5] L. Xiao, X. Zhang, and S. A. Kubricht. Improving memory performance of
sorting algorithms. ACM Journal of Experimental Algorithmics, 5(3), 2000.

13



5 Annexure A

5.1 Results for Input in RAM

14



15



5.2 Results for Input in RAM

16



17


