2 The Dictionary Problem: Search Trees

Summer Term 2010

Robert Elsasser

Albert-Ludwigs-Universitéit Freiburg

UNI

FREIBURG

UNI
FREIBURG

The dictionary problem can be described as follows:

Given: a set of objects (data) where each element can
be identified by a unique key
(integer, string, ...).

Goal: a structure for storing the set of objects such that
at least the following operations (methods) are
supported:

* search (find, access)
* insert
* delete

20.04.2010 Theory 1 - Search Trees 2

The following conditions can influence the choice of a solution to the dictionary
problem:

The place where the data are stored: main memory, hard drive, tape, WORM
(write once read multiple)

The frequency of the operations:

— mostly insertion and deletion (dynamic)
— mostly search (static)

— approximately the same frequencies

— not known

= Other operations to be implemented:
— Enumerate the set in a certain order (e.g. ascending by key)
— Set operations: union, intersection, difference quantity, ...
Cunlit
- O[JIII.

— construct

= Measure for estimating the solution: average case, worst case, amortized worst
case

= Order of executing the operations:
— sequential
— concurrent

20.04.2010 Theory 1 - Search Trees 3

UNI

FREIBURG

UNI

Different approaches to the dictionary problem:

Structuring the complete universe of all
possible keys: hashing

Structuring the set of the actually occurring
keys: lists, trees, graphs, ...

eeeeeeeeeeeeeeeeeee

FREIBURG

Trees are

generalized lists

special graphs:

information).
vertices = # edges + 1

information:

— decision trees
— code trees

— syntax trees

20.04.2010

(each list element can have more than one successor)

— in general, a graph G = (V,E) consists of a set V of vertices and
a set E € V x V of edges.

— the edges are either directed or undirected.

— vertices and edges can be labelled (they contain further

A tree is a connected acyclic graph, where:

A general and central concept for the hierarchical structuring of

Theory 1 - Search Trees

UNI

FREIBURG

Several kinds of trees can be distinguished:
Undirected tree (with no designated root)

5 6
4

2
Rooted tree (one node [= vertex] is designated as the root)

4e «— Wurzel

(A caniiAnnA~a A f ~nairmaian nainhh
Il \a DU\.{UCI 1ILCT VI 'Jall VWIOT ||C|U| 19}

A AN

C ~
— 11Ul cavll 11V

the root

T
]
Q.

—hthe parent (or: direct predecessor) of a node k is the first neighbour on the path from k to
the root

— the children (or: direct successors) are the other neighbours of k

— the rank (or: outdegree) of a node k is the number of children of k

20.04.2010 Theory 1 - Search Trees 6

UNI
FREIBURG

UNI
FREIBURG

Rooted tree:

— root: the only node that has no parent

— leaf nodes (leaves): nodes that have no children

— internal nodes: all nodes that are not leaves

— order of a tree T: maximum rank of anode in T

— The notion tree is often used as a synonym for rooted tree.

= QOrdered (rooted) tree: among the children of each node there is
an order,

e.g. the < relation among the keys of the nodes

1 <2

= Binary tree: ordered tree of order 2; the children of a node are
referred to
as left child and right child.

Multiway tree: ordered tree of order > 2

20.04.2010 Theory 1 - Search Trees 7

UNI

A more precise definition of the set M, of the ordered rooted trees of order d
(d=1):

A single node is in M

Lett,, ...ty € M,and w a node. Then w with the roots of t,, . . .,t; as its
children (from left to right) is a tree t € M. The t; are subtrees of t.

— According to this definition each node has rank d (or rank 0).
— In general, the rank can be < d.
— Nodes of binary trees either have 0 or 2 children.

— Nodes with exactly 1 child could also be permitted by allowing empty
subtrees in the above definition.

20.04.2010 Theory 1 - Search Trees 8

FREIBURG

UNI
FREIBURG

IS a tree of order d, with height O.

Let t,,...,t; be disjoint trees of order d. Then another
tree of order d can be created by making the roots of
t,,...,t4 the successors of a newly created root w. The
height h of the new tree is max {h(t,),...,h(ty)}+1.

Convention: d = 2 binary trees, d > 2 multiway trees.

20.04.2010

Theory 1 - Search Trees

UNI
FREIBURG

e

/\

tree not a tree not a tree
(but two trees!)

20.04.2010 Theory 1 - Search Trees 10

UNI
FREIBURG

Depth of a node k: # edges from the tree root until k
(distance of k to the root)

Height h(t) of a tree t: maximum depth of a leaf in t.
Alternative (recursive) definition:

— h(leaf) =0

—h(t) = 1 + max{t; | root of t; is a child of the root of t}
(t Is a subtree of t)

Level i: all nodes of depth |

Complete tree: tree where each non-empty level has
the maximum number of nodes.
- all leaves have the same depth.

20.04.2010 Theory 1 - Search Trees 11

UNI

Use of trees for the dictionary problem:
Node: stores one data object
Tree: stores a set of data

Advantage (compared to hash tables):
enumeration of the complete set of data

(e.g. in ascending order) can be accomplished
easily.

eeeeeeeeeeeeeeeeeee

FREIBURG

Goal: Storage, retrieval of data (more general: dictionary problem)
Two alternative ways of storage:

Search trees: keys are stored in internal nodes
leaf nodes are empty (usually = null), they represent intervals between
the keys

Leaf search trees: keys are stored in the leaves
internal nodes contain information in order to direct the search for a key

Search tree condition:
For each internal node k: all keys in the left subtree t, of k are less (<)
than the key in k and all keys in the right subtree t, of k are greater (>)
than the key in k
()

20.04.2010 Theory 1 - Search Trees 13

UNI

FREIBURG

UNI
FREIBURG

Leaves in the search tree represent intervals between keys of the

internal nodes

(-00,3) (9,12) (12, 00)
(3,4) (49
How can the search for key s be implemented? (leaf = null)

k = root;
while (k = null) {

IT (s == k.key) return true;

iIT (s < k.key) k = k.left;

else k = k.right
+

return false;

20.04.2010 Theory 1 - Search Trees 14

Search for key s ends in the internal node k with k.key == s

or in the leaf whose interval contains s

20.04.2010

Wurzel —

—

\t]
/
/

27

5

1

4

Theory 1 - Search Trees

39

15

UNI

FREIBURG

UNI
FREIBURG

| eaf search tree:

Keys are stored in leaf nodes

Clues (routers) are stored in internal nodes, such that s,<s, <s,
(s, : key in left subtree, s, : router in k, s, : key in right subtree)
“=" should not occur twice in the above inequality

Choice of s: either maximum key in t; (usual) or minimum key in t..

20.04.2010 Theory 1 - Search Trees 16

Leaf nodes store keys, internal nodes contain routers.

20.04.2010 Theory 1 - Search Trees

17

UNI

FREIBURG

Leaf nodes store keys, internal nodes contain routers.

20.04.2010 Theory 1 - Search Trees

18

UNI

FREIBURG

Leaf nodes store keys, internal nodes contain routers.

20.04.2010 Theory 1 - Search Trees 19

UNI
FREIBURG

UNI
FREIBURG

How is the search for key s implemented in a leaf search tree?
(leaf node with 2 null pointers)

k = root;
iIT (k == null) return false;
while (k.left = null) { // thus also k.right = null

IT (s <= k.key) k = k.left;

else k = k.right;
} // now in the leaf
return s==k.key;

In the) following we always talk about search trees (not leaf search
trees).

20.04.2010 Theory 1 - Search Trees 20

class SearchNode {
int content;
SearchNode left;
SearchNode right;
SearchNode (int c){
content = c;
left = right = null;

+
} //class SearchNode

class SearchTree {
SearchNode root;
SearchTree () {
y root = null;

// ...

20.04.2010

// Constructor for a node
// without successor

// Constructor for empty tree

Theory 1 - Search Trees 21

UNI

FREIBURG

/* Search for c 1In the tree */
boolean search (int c) {
return search (root, c);

}

boolean search (SearchNode n, Int c){
while (n = null) {
IT (c == n.content) return true;
IT (c < n.content) n = n.left;
else n = n.right;

}

return false;

20.04.2010 Theory 1 - Search Trees

22

UNI

FREIBURG

UNI

Alternative tree structure:

Instead of leaf = null, set leaf = pointer to a
special “stop node” b

For searching, store the search key s in b to
save comparisons in internal nodes.

Use of a stop node for searching!

20.04.2010 Theory 1 - Search Trees 23

FREIBURG

Wurzel — 27

3/

39

5

L \1
F
/

14

JV YVYVYY

20.04.2010 Theory 1 - Search Trees

UNI
FREIBURG

24

Insertion of a node with key s in search tree t:

Search for s ends in a node with s: don‘t insert
(otherwise, there would be duplicated keys)

Search ends in leaf b: make b an internal
node with s as its key and two new leaves.

- {ree remains a search tree!

200420100 Theor y 1 - Search Trees 25

UNI
FREIBURG

UNI

Insert 5

v

Tree structure depends on the order of insertions into the initially empty
tree

Height can increase linearly, but it can also be in O(log n),
more precisely [log, (n+1) | .

20.04.2010 Theory 1 - Search Trees 26

FREIBURG

UNI
FREIBURG

int height() {

return height(root);
}
int height(SearchNode n){
iIf (n == null) return O;
else return 1 + Math.max(height(n.left),
height(n.right));
}

/* Insert c Into tree; return true 1T successful
and false 1f c was 1In tree already */
boolean i1nsert (int c) { // insert c

iIf (root == null){
root = new SearchNode (c);
return true;

} else return insert (root, c);

20.04.2010 Theory 1 - Search Trees 27

UNI
FREIBURG

boolean i1nsert (SearchNode n, Int c){

while (true){
IT (c == n.content) return false;

IT (c < n.content){
1IT (n.left == null) {
n.left = new SearchNode (c);
return true;
1 else n = n.left;
} else { // c > n.content
iIT (n.right == null) {
n.right = new SearchNode (c);
return true;
} else n = n.right;

20.04.2010 Theory 1 - Search Trees 28

UNI
FREIBURG

The structure of the resulting tree depends on the order, in which the

keys are inserted. The minimal heightis| log, (n + 1) | and the maximal
height is n.

Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and

1,3, 14,15, 27, 39:

15 03\
Lo | o \

/ \ a

*[s
3 3I9 \
e | o i
= vl 5
L] (] [] L] .I.

ol

20.04.2010

Theory 1 - Search Trees 29

FREIBU RG

UNI

A standard tree is created by iterative insertions
In an initially empty tree.

Which trees are more frequent/typical: the
balanced or the degenerate ones?

How costly is an insertion?

eeeeeeeeeeeeeeeeeee

UNI

Deletion of a node with key s from a tree (while retaining the search tree property)

Search for s.
If search fails: done.
Otherwise search ends in node k with k.key == s and

k has no child, one child or two children:
(a) no child: done (set the parent’s pointer to null instead of k)
(b) only one child: let k's parent v point to k’s child instead of k
(c) two children: search for the smallest key in k’s right subtree, i.e. go right and
then
to the left as far as possible until you reach p (the symmetrical successor of k);
copy p.key to k, delete p (which has at most one child, so follow step (a) or

(b))

20.04.2010 Theory 1 - Search Trees 31

FREIBURG

UNI
FREIBURG

Definition: A node q is called the symmetrical successor of a node p
if g contains the smallest key greater than or equal to the key of

P.

Observations:

The symmetrical successor q of p is leftmost node in the right
subtree of p.

The symmetrical successor has at most one child, which is the
right child.

20.04.2010 Theory 1 - Search Trees 32

UNI
FREIBURG

Observation: If p has a right child, the symmetrical successor always
exists.

First go to the right child of p.

From there, always proceed to the left child until you find a node
without a left child. 0

20.04.2010 Theory 1 - Search Trees 33

UNI
FREIBURG

Delete p by replacing its content with the content of its symmetrical successor g.
Then delete q.

Deletion of q is easy because g has at most one child.

/o /N

/'I\\ —_— f|’\\
| y/fl\\ | |\\
s K

20.04.2010 Theory 1 - Search Trees 34

FREIBURG

2
k has no internal child, one internal child or two internal children: =

a) y L
2 ;i
b) v B v
k
£
C) v —_— v d)
k
t

20.04.2010 Theory 1 - Search Trees 35

boolean delete(int c) {
return delete(null, root, c);

// delete c from the tree rooted In n, whose parent iIs vn
boolean delete(SearchNode vn, SearchNode n, Int c) {
iIT (n == null) return false;
IT (c < n.content) return delete(n, n.left, ¢);
iIT (c > n.content) return delete(n, n.right, c);
// now we have: c == n.content
IT (n.left == null) {
point (vn, n, n.right);
return true;

1
IT (n.right == null) {
point {vn, n, n.

return true;

3
// ...

20.04.2010 Theory 1 - Search Trees

36

UNI
FREIBURG

UNI
FREIBURG

// now n_left !'= null and n.right '= null

SearchNode g = pSymSucc(n);

iIT (n==q9) { 7/ right child of g i1s pSymSucc(n)
n.content = g.right.content;
q-right = g.right.right;
return true;

} else { // left child of g 1s pSymSucc(n)
n.content = g.left.content;
q-left = q.left.right;
return true;

} // boolean delete(SearchNode vn, SearchNode n, Int c)

20.04.2010 Theory 1 - Search Trees 37

FREIBURG

"4
// let vn point to m instead of n; =
// 1t vn == null, set root pointer to m
void point(SearchNode vn, SearchNode n, SearchNode m) {
iIT (vn == null) root = m;

else 1f (vn_.left == n) vn.left = m;
else vn_.right = m;
¥
// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {
IT (n.right.left = null) {
n = n.right;
while (n.left.left '= null) n = n.left;
}

return n;

20.04.2010 Theory 1 - Search Trees 38

