
2 The Dictionary Problem: Search Trees

Summer Term 2010

Robert ElsässerRobert Elsässer

The Dictionary Problem

The dictionary problem can be described as follows:
Given: a set of objects (data) where each element canGiven: a set of objects (data) where each element can

be identified by a unique key
(integer, string, ...).(g , g,)

Goal: a structure for storing the set of objects such that
at least the following operations (methods) are
supported:
• search (find, access)

insert• insert
• delete

20.04.2010 Theory 1 - Search Trees 2

The Dictionary Problem (2)

The following conditions can influence the choice of a solution to the dictionary
blproblem:

The place where the data are stored: main memory, hard drive, tape, WORM
(write once read multiple)
The frequency of the operations:The frequency of the operations:
– mostly insertion and deletion (dynamic)
– mostly search (static)
– approximately the same frequencies
– not knownnot known
Other operations to be implemented:
– Enumerate the set in a certain order (e.g. ascending by key)
– Set operations: union, intersection, difference quantity, ...

Split– Split
– construct
Measure for estimating the solution: average case, worst case, amortized worst
case
Order of executing the operations:
– sequential
– concurrent

20.04.2010 Theory 1 - Search Trees 3

The Dictionary Problem (3)

Different approaches to the dictionary problem:Different approaches to the dictionary problem:
Structuring the complete universe of all

ibl k h hipossible keys: hashing
Structuring the set of the actually occurring
keys: lists, trees, graphs, ...

20.04.2010 Theory 1 - Search Trees 4

Trees (1)

Trees are
generalized lists
(each list element can have more than one successor)
special graphs:special graphs:
– in general, a graph G = (V,E) consists of a set V of vertices and

a set E ⊆ V × V of edges.
– the edges are either directed or undirectedthe edges are either directed or undirected.
– vertices and edges can be labelled (they contain further
information).
A tree is a connected acyclic graph where:A tree is a connected acyclic graph, where:
vertices = # edges + 1
A general and central concept for the hierarchical structuring of
information:information:
– decision trees
– code trees
– syntax trees

20.04.2010 Theory 1 - Search Trees 5

– syntax trees

Trees (2)

Several kinds of trees can be distinguished:
U di t d t (ith d i t d t)Undirected tree (with no designated root)

4
65

1 3

Rooted tree (one node [= vertex] is designated as the root)
Wurzel4

2
3

From each node k there is exactly one path (a sequence of pairwise neighbouring edges) to

65

1
3

2

– From each node k there is exactly one path (a sequence of pairwise neighbouring edges) to
the root

– the parent (or: direct predecessor) of a node k is the first neighbour on the path from k to
the root

– the children (or: direct successors) are the other neighbours of k

– the rank (or: outdegree) of a node k is the number of children of k

20.04.2010 Theory 1 - Search Trees 6

Trees (3)

Rooted tree:
– root: the only node that has no parent
– leaf nodes (leaves): nodes that have no children
– internal nodes: all nodes that are not leaves
– order of a tree T: maximum rank of a node in T– order of a tree T: maximum rank of a node in T
– The notion tree is often used as a synonym for rooted tree.
Ordered (rooted) tree: among the children of each node there is
an order,an order,
e.g. the < relation among the keys of the nodes

3 < 5 <

4

6

Binary tree: ordered tree of order 2; the children of a node are
1 < 2

3 < 5 < 6

Binary tree: ordered tree of order 2; the children of a node are
referred to
as left child and right child.
Multiway tree: ordered tree of order > 2

20.04.2010 Theory 1 - Search Trees 7

u ay ee o de ed ee o o de

Trees (4)

A more precise definition of the set Md of the ordered rooted trees of order d
(d 1)(d ≥ 1):

A single node is in Md

Let t1, . . .,td  Md and w a node. Then w with the roots of t1, . . .,td as its
children (from left to right) is a tree t  Md. The ti are subtrees of t.

– According to this definition each node has rank d (or rank 0).

– In general, the rank can be ≤ d.

– Nodes of binary trees either have 0 or 2 children.

– Nodes with exactly 1 child could also be permitted by allowing empty y p y g p y
subtrees in the above definition.

20.04.2010 Theory 1 - Search Trees 8

Recursive Definition

is a tree of order d with height 0is a tree of order d, with height 0.
Let t1,…,td be disjoint trees of order d. Then another
tree of order d can be created by making the roots oftree of order d can be created by making the roots of
t1,…,td the successors of a newly created root w. The
height h of the new tree is max {h(t1),…,h(td)}+1.

w

t1 t2 td

..................

Convention: d = 2 binary trees, d > 2 multiway trees.

1 2 d

20.04.2010 Theory 1 - Search Trees 9

Examples

tree not a tree not a tree
(b t t o trees!)(but two trees!)

20.04.2010 Theory 1 - Search Trees 10

Structural Properties of Trees

Depth of a node k: # edges from the tree root until kDepth of a node k: # edges from the tree root until k
(distance of k to the root)
Height h(t) of a tree t: maximum depth of a leaf in t.Height h(t) of a tree t: maximum depth of a leaf in t.
Alternative (recursive) definition:
– h(leaf) = 0
– h(t) = 1 + max{ti | root of ti is a child of the root of t}
(ti is a subtree of t)
L l i ll d f d th iLevel i: all nodes of depth i
Complete tree: tree where each non-empty level has
the maximum number of nodesthe maximum number of nodes.
 all leaves have the same depth.

20.04.2010 Theory 1 - Search Trees 11

Applications of Trees

Use of trees for the dictionary problem:Use of trees for the dictionary problem:
Node: stores one data object
Tree: stores a set of data
Advantage (compared to hash tables): g (p)
enumeration of the complete set of data
(e.g. in ascending order) can be accomplished (g g) p
easily.

20.04.2010 Theory 1 - Search Trees 12

Standard binary search trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)g (g y p)
Two alternative ways of storage:

Search trees: keys are stored in internal nodes
leaf nodes are empty (usually = null), they represent intervals between p y (y) y p
the keys
Leaf search trees: keys are stored in the leaves
internal nodes contain information in order to direct the search for a key

Search tree condition:
For each internal node k: all keys in the left subtree tl of k are less (<)
than the key in k and all keys in the right subtree tr of k are greater (>)
than the key in kthan the key in k

k

t l t r

20.04.2010 Theory 1 - Search Trees 13

Standard binary search trees (2)

Leaves in the search tree represent intervals between keys of the p y
internal nodes 9

3 12

(9,12) (12,)(- ,3) ∞∞
4

How can the search for key s be implemented? (leaf ≅ null)
k = root;

(4,9)(3,4)

k root;
while (k != null) {

if (s == k.key) return true;
if (s < k.key) k = k.left;
else k = k.right

}
return false;

20.04.2010 Theory 1 - Search Trees 14

Example (without stop mode)

Search for key s ends in the internal node k with k.key == sSearch for key s ends in the internal node k with k.key s

or in the leaf whose interval contains s

Wurzel 27Wurzel

393

151

14

20.04.2010 Theory 1 - Search Trees 15

14

Standard binary search trees (3)

Leaf search tree:
Keys are stored in leaf nodes
Clues (routers) are stored in internal nodes, such that sl ≤ sk ≤ sr
(s : key in left subtree s : router in k s : key in right subtree)(sl : key in left subtree, sk : router in k, sr : key in right subtree)
“=“ should not occur twice in the above inequality
Choice of s: either maximum key in tl (usual) or minimum key in tr.

20.04.2010 Theory 1 - Search Trees 16

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.Leaf nodes store keys, internal nodes contain routers.

20.04.2010 Theory 1 - Search Trees 17

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.Leaf nodes store keys, internal nodes contain routers.

1

5 6

9 12

5 6

20.04.2010 Theory 1 - Search Trees 18

Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.Leaf nodes store keys, internal nodes contain routers.

1 9

6

1

5 6

9 125

5 6

20.04.2010 Theory 1 - Search Trees 19

Standard binary search trees (4)

How is the search for key s implemented in a leaf search tree?
(l f d ith 2 ll i t)(leaf node with 2 null pointers)

k = root;
if (k ll) t f lif (k == null) return false;
while (k.left != null) { // thus also k.right != null

if (s <= k.key) k = k.left;
else k = k.right;

} // now in the leaf
t k kreturn s==k.key;

In the following we always talk about search trees (not leaf search
trees).

6

1 9

6

1

5 6

9 125

20.04.2010 Theory 1 - Search Trees 20

Standard binary search trees (5)

class SearchNode {
int content;;
SearchNode left;
SearchNode right;
SearchNode (int c){ // Constructor for a node

content = c; // without successorcontent c; // without successor
left = right = null;

}
} //class SearchNode

class SearchTree {
SearchNode root;
SearchTree () { // Constructor for empty tree

root = null;
}
// ...

}

20.04.2010 Theory 1 - Search Trees 21

Standard binary search trees (6)

/* Search for c in the tree */
boolean search (int c) {

return search (root, c);
}
boolean search (SearchNode n, int c){

while (n != null) {
if (c == n.content) return true;
if (< t t) l ftif (c < n.content) n = n.left;
else n = n.right;

}
return false;return false;

}

20.04.2010 Theory 1 - Search Trees 22

Standard binary search trees (7)

Alternative tree structure:Alternative tree structure:
Instead of leaf  null, set leaf  pointer to a

i l “ t d ” bspecial “stop node” b
For searching, store the search key s in b to
save comparisons in internal nodes.

Use of a stop node for searching!

20.04.2010 Theory 1 - Search Trees 23

Example (with stop mode)

27Wurzel

393

151

14

x

20.04.2010 Theory 1 - Search Trees 24

Standard binary search trees (7)

Insertion of a node with key s in search tree t:Insertion of a node with key s in search tree t:
Search for s ends in a node with s: don‘t insert
(th i th ld b d li t d k)(otherwise, there would be duplicated keys)
Search ends in leaf b: make b an internal
node with s as its key and two new leaves.

 tree remains a search tree!

20.04.2010 Theory 1 - Search Trees 25

Standard binary search trees (8)

Insert 5

3

9

123

9

12

44

5

Tree structure depends on the order of insertions into the initially empty
ttree
Height can increase linearly, but it can also be in O(log n),
more precisely ⎡ log2 (n+1) ⎤ .

20.04.2010 Theory 1 - Search Trees 26

Standard binary search trees (9)

int height() {
return height(root);

}
int height(SearchNode n){

if (n == null) return 0;if (n == null) return 0;
else return 1 + Math.max(height(n.left),

height(n.right));
}
/* Insert c into tree; return true if successful

and false if c was in tree already */
boolean insert (int c) { // insert c

if (root null){if (root == null){
root = new SearchNode (c);
return true;

} else return insert (root, c);} (,);
}

20.04.2010 Theory 1 - Search Trees 27

Standard binary search trees (10)

boolean insert (SearchNode n, int c){
while (true){

if (c == n.content) return false;
if (c < n.content){

if (n left == null) {if (n.left == null) {
n.left = new SearchNode (c);
return true;

} else n = n.left;
} else { // c > n.content

if (n.right == null) {
n.right = new SearchNode (c);
return true;return true;

} else n = n.right;
}

}}
}

20.04.2010 Theory 1 - Search Trees 28

Special cases

The structure of the resulting tree depends on the order, in which the g p ,
keys are inserted. The minimal height is ⎡ log2 (n + 1) ⎤ and the maximal
height is n.
Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 andResulting search trees for the sequences 15, 39, 3, 27, 1, 14 and
1, 3, 14, 15, 27, 39:

1

15
3

14

393

14 271
15

2727

39

20.04.2010 Theory 1 - Search Trees 29

Standard binary search trees (11)

A standard tree is created by iterative insertionsA standard tree is created by iterative insertions
in an initially empty tree.
Whi h t f t/t i l thWhich trees are more frequent/typical: the
balanced or the degenerate ones?
How costly is an insertion?

20.04.2010 Theory 1 - Search Trees 30

Standard binary search trees (11)

Deletion of a node with key s from a tree (while retaining the search tree property)
Search for s.
If search fails: done.
Otherwise search ends in node k with k.key == s and
k has no child one child or two children:k has no child, one child or two children:
(a) no child: done (set the parent’s pointer to null instead of k)
(b) only one child: let k’s parent v point to k’s child instead of k
(c) two children: search for the smallest key in k’s right subtree, i.e. go right and
thenthen

to the left as far as possible until you reach p (the symmetrical successor of k);
copy p.key to k, delete p (which has at most one child, so follow step (a) or

(b))

20.04.2010 Theory 1 - Search Trees 31

Symmetrical successor

Definition: A node q is called the symmetrical successor of a node pDefinition: A node q is called the symmetrical successor of a node p
if q contains the smallest key greater than or equal to the key of
p.

Observations:

The symmetrical successor q of p is leftmost node in the right
subtree of p.

The symmetrical successor has at most one child, which is the
right child.

20.04.2010 Theory 1 - Search Trees 32

Finding the symmetrical successor

Observation: If p has a right child, the symmetrical successor alwaysObservation: If p has a right child, the symmetrical successor always
exists.

First go to the right child of p.

From there always proceed to the left child until you find a nodeFrom there, always proceed to the left child until you find a node
without a left child. p

q

20.04.2010 Theory 1 - Search Trees 33

Idea of the delete operation

Delete p by replacing its content with the content of its symmetrical successor q.p y p g y q
Then delete q.
Deletion of q is easy because q has at most one child.

xp xp

yq yq

20.04.2010 Theory 1 - Search Trees 34

Example

k has no internal child, one internal child or two internal children: ,

vv

sk

a)

v

sk

vb) v

t l

v

sk

t

b)

vv

sk

t l

v

sk

c) d)

t r

t r

sk sk

t l
t r

p

20.04.2010 Theory 1 - Search Trees 35

Standard binary search trees (12)

boolean delete(int c) {
t d l t (ll t)return delete(null, root, c);

}
// delete c from the tree rooted in n, whose parent is vn
boolean delete(SearchNode vn, SearchNode n, int c) {

if (n == null) return false;if (n null) return false;
if (c < n.content) return delete(n, n.left, c);
if (c > n.content) return delete(n, n.right, c);
// now we have: c == n.content
if (n.left == null) {

point (vn, n, n.right);
return true;

}
if (n.right == null) {

point (vn n n left);point (vn, n, n.left);
return true;

}
// ...

20.04.2010 Theory 1 - Search Trees 36

Standard binary search trees (13)

// now n.left != null and n.right != null
S hN d S S ()SearchNode q = pSymSucc(n);
if (n == q) { // right child of q is pSymSucc(n)

n.content = q.right.content;
q.right = q.right.right;
return true;return true;

} else { // left child of q is pSymSucc(n)
n.content = q.left.content;
q.left = q.left.right;
return true;

}
} // boolean delete(SearchNode vn, SearchNode n, int c)

20.04.2010 Theory 1 - Search Trees 37

Standard binary search trees (14)

// let vn point to m instead of n;
// if vn == null, set root pointer to m
void point(SearchNode vn, SearchNode n, SearchNode m) {

if (vn == null) root = m;
else if (vn.left == n) vn.left = m;
else vn.right = m;

}
// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {p y

if (n.right.left != null) {
n = n.right;
while (n.left.left != null) n = n.left;

}}
return n;

}

20.04.2010 Theory 1 - Search Trees 38

