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Definition of AVL trees

Definition: A binary search tree is called AVL tree or height-balanced tree, ify g ,
for each node v the height of the right subtree h(Tr) of v and the height of
the left subtree h(Tl) of v differ by at most 1.

Balance factor:
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Deletion from an AVL tree

We proceed similarly to standard search trees:p y

1. Search for the key to be deleted.

2. If the key is not contained, we are done.

3 Otherwise we distinguish three cases:3. Otherwise we distinguish three cases:
(a) The node to be deleted has no internal nodes as its children.
(b) The node to be deleted has exactly one internal child node.
(c) The node to be deleted has two internal children.

After deleting a node the AVL property may be violated (similar toAfter deleting a node the AVL property may be violated (similar to 
insertion).

This must be fixed appropriately
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This must be fixed appropriately.



Example
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Node has only leaves at children
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Node has only leaves at children

height ∈ {1, 2}

Case1: height = 1: Done!
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Node has only leaves at children

Case 2: height = 2
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Note: height may have decreased by 1!



Node has one internal node as a child
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Node has two internal nodes as children

First we proceed just like we do in standard search trees:p j

1. Replace the content of the node to be deleted p by the content of its
symmetrical successor qsymmetrical successor q.

2. Then delete node q.

Since q can have at most one internal node as a child (the right one), 
cases 1 and 2 apply for q.
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The method upout

The method upout works similarly to upin.

It is called recursively along the search path and adjusts the balance 
factors via rotations and double rotations.

When upout is called for a node p, we have (see above):

1 bal(p) = 01. bal(p) = 0
2. The height of the subtree rooted in p has decreased by 1.

upout will be called recursively as long as these conditions are fulfilledupout will be called recursively as long as these conditions are fulfilled 
(invariant). 

Again, we distinguish 2 cases, depending on whether p Is the left or the g g p g p
right child of its parent φp.

Since the two cases are symmetrical, we only consider the case 
where p is the left child of φp
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where p is the left child of φp.



Example
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Case 1.1: p is the left child of φp and bal(φp)= -1

upout(φp)φp -1 φp 0

upout(p) p 0

Since the height of the subtree rooted in p has decreased by 1, the 
b l f t f h t 0balance factor of φp changes to 0.

By this, the height of the subtree rooted in φp has also decreased by 1 
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and we have to call upout(φp) (the invariant now holds for φp!).



Case 1.2: p is the left child of φp and bal(φp)= 0

φp 0 φp 0

done!upout(p) p 0p

Since the height of the subtree rooted in p has decreased by 1, the 
b l f t f h t 1balance factor of φp changes to 1.

Then we are done, because the height of the subtree rooted in φp has 
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not changed.



Case 1.3: p is the left child of φp and bal(φp)= +1

φp 0

upout(p) 0p q

Then the right subtree of φp was higher (by 1) than the left subtree
before the deletion.

Hence, in the subtree rooted in φp the AVL property is now violated.
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We distinguish three cases according to the balance factor of q.



Case 1.3.1: bal(q) = 0

φp +1v -1w

done!left rotation

wq 0up 0 v +1

done!

up 0
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Case 1.3.2: bal(q) = +1

upout(r)
φp +1v 0wr

upout(p)

upout(r)

wq 1up 0 v 0

up 0

left rotation

0

h – 1

1

h – 1 2h 1

3

h + 1

2

h
2

h

3

h + 1

0

h - 1

1

h – 1

Again, the height of the subtree has decreased by 1, while bal(r) = 0
(invariant).

h + 1
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Hence we call upout(r).



Case 1.3.3: bal(q) = -1

0zrφp +1v upout(r)

double rotation
right left

v 0 w 00u wqp -1
upout(p)

right-left

up 0
0 1

z

0

h – 1

1

h – 1 4

2 30

h - 1

1

h – 1

4

h
2 3

h

Since bal(q) = -1, one of the trees 2 or 3 must have height h.
Therefore, the height of the complete subtree has decreased by 1, while  
bal(r) = 0 (invariant).
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Hence, we again call upout(r).



Observation

Unlike insertions, deletions may cause recursive calls of upout after a, y p
double rotation.

Therefore in general a single rotation or double rotation is not sufficientTherefore, in general a single rotation or double rotation is not sufficient 
to rebalance the tree.

Th l h f ll d l th h th t tiThere are examples where for all nodes along the search path rotations 
or double rotations must be carried out.

Since h ≤ 1.44 ... log2(n) + 1, we may conclude that the deletion of a key 
form an AVL tree with n keys can be carried out in at most O(log n) 
steps.

AVL trees are a worst-case efficient data structure for finding, inserting 
and deleting keys.
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