
5 AVL trees: deletion

Summer Term 2010

Robert ElsässerRobert Elsässer

Definition of AVL trees

Definition: A binary search tree is called AVL tree or height-balanced tree, ify g ,
for each node v the height of the right subtree h(Tr) of v and the height of
the left subtree h(Tl) of v differ by at most 1.

Balance factor:

04.05.2010 Theory 1 - AVL trees: deletion 2

Deletion from an AVL tree

We proceed similarly to standard search trees:p y

1. Search for the key to be deleted.

2. If the key is not contained, we are done.

3 Otherwise we distinguish three cases:3. Otherwise we distinguish three cases:
(a) The node to be deleted has no internal nodes as its children.
(b) The node to be deleted has exactly one internal child node.
(c) The node to be deleted has two internal children.

After deleting a node the AVL property may be violated (similar toAfter deleting a node the AVL property may be violated (similar to
insertion).

This must be fixed appropriately

04.05.2010 Theory 1 - AVL trees: deletion 3

This must be fixed appropriately.

Example

04.05.2010 Theory 1 - AVL trees: deletion 4

Node has only leaves at children

04.05.2010 Theory 1 - AVL trees: deletion 5

Node has only leaves at children

height ∈ {1, 2}

Case1: height = 1: Done!

04.05.2010 Theory 1 - AVL trees: deletion 6

Node has only leaves at children

Case 2: height = 2

04.05.2010 Theory 1 - AVL trees: deletion 7

Note: height may have decreased by 1!

Node has one internal node as a child

04.05.2010 Theory 1 - AVL trees: deletion 8

Node has two internal nodes as children

First we proceed just like we do in standard search trees:p j

1. Replace the content of the node to be deleted p by the content of its
symmetrical successor qsymmetrical successor q.

2. Then delete node q.

Since q can have at most one internal node as a child (the right one),
cases 1 and 2 apply for q.

04.05.2010 Theory 1 - AVL trees: deletion 9

The method upout

The method upout works similarly to upin.

It is called recursively along the search path and adjusts the balance
factors via rotations and double rotations.

When upout is called for a node p, we have (see above):

1 bal(p) = 01. bal(p) = 0
2. The height of the subtree rooted in p has decreased by 1.

upout will be called recursively as long as these conditions are fulfilledupout will be called recursively as long as these conditions are fulfilled
(invariant).

Again, we distinguish 2 cases, depending on whether p Is the left or the g g p g p
right child of its parent φp.

Since the two cases are symmetrical, we only consider the case
where p is the left child of φp

04.05.2010 Theory 1 - AVL trees: deletion 10

where p is the left child of φp.

Example

04.05.2010 Theory 1 - AVL trees: deletion 11

Case 1.1: p is the left child of φp and bal(φp)= -1

upout(φp)φp -1 φp 0

upout(p) p 0

Since the height of the subtree rooted in p has decreased by 1, the
b l f t f h t 0balance factor of φp changes to 0.

By this, the height of the subtree rooted in φp has also decreased by 1

04.05.2010 Theory 1 - AVL trees: deletion 12

and we have to call upout(φp) (the invariant now holds for φp!).

Case 1.2: p is the left child of φp and bal(φp)= 0

φp 0 φp 0

done!upout(p) p 0p

Since the height of the subtree rooted in p has decreased by 1, the
b l f t f h t 1balance factor of φp changes to 1.

Then we are done, because the height of the subtree rooted in φp has

04.05.2010 Theory 1 - AVL trees: deletion 13

not changed.

Case 1.3: p is the left child of φp and bal(φp)= +1

φp 0

upout(p) 0p q

Then the right subtree of φp was higher (by 1) than the left subtree
before the deletion.

Hence, in the subtree rooted in φp the AVL property is now violated.

04.05.2010 Theory 1 - AVL trees: deletion 14

We distinguish three cases according to the balance factor of q.

Case 1.3.1: bal(q) = 0

φp +1v -1w

done!left rotation

wq 0up 0 v +1

done!

up 0

0

h – 1

1

h – 1
2

2 30 1
3

h + 1

h + 1
h +1 h + 1h - 1 h – 1

04.05.2010 Theory 1 - AVL trees: deletion 15

Case 1.3.2: bal(q) = +1

upout(r)
φp +1v 0wr

upout(p)

upout(r)

wq 1up 0 v 0

up 0

left rotation

0

h – 1

1

h – 1 2h 1

3

h + 1

2

h
2

h

3

h + 1

0

h - 1

1

h – 1

Again, the height of the subtree has decreased by 1, while bal(r) = 0
(invariant).

h + 1

04.05.2010 Theory 1 - AVL trees: deletion 16

Hence we call upout(r).

Case 1.3.3: bal(q) = -1

0zrφp +1v upout(r)

double rotation
right left

v 0 w 00u wqp -1
upout(p)

right-left

up 0
0 1

z

0

h – 1

1

h – 1 4

2 30

h - 1

1

h – 1

4

h
2 3

h

Since bal(q) = -1, one of the trees 2 or 3 must have height h.
Therefore, the height of the complete subtree has decreased by 1, while
bal(r) = 0 (invariant).

04.05.2010 Theory 1 - AVL trees: deletion 17

Hence, we again call upout(r).

Observation

Unlike insertions, deletions may cause recursive calls of upout after a, y p
double rotation.

Therefore in general a single rotation or double rotation is not sufficientTherefore, in general a single rotation or double rotation is not sufficient
to rebalance the tree.

Th l h f ll d l th h th t tiThere are examples where for all nodes along the search path rotations
or double rotations must be carried out.

Since h ≤ 1.44 ... log2(n) + 1, we may conclude that the deletion of a key
form an AVL tree with n keys can be carried out in at most O(log n)
steps.

AVL trees are a worst-case efficient data structure for finding, inserting
and deleting keys.

04.05.2010 Theory 1 - AVL trees: deletion 18

g y

