6 Hashing

Summer Term 2010

Robert Elsasser

Albert-Ludwigs-Universitéit Freiburg

UNI

FREIBURG

Different approaches to the dictionary problem:

Previously: Structuring the set of currently stored keys: lists, trees,
graphs, ...

Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by
breaking down the universe of possible keys.

The position of the data element in the memory is given by computing a so
called hash value directly from the key.

05.05.2010 Theory 1 - Hashing 2

UNI

FREIBURG

Dictionary problem:
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of d
- NO comparisons
—> constant time

Data structure: linear field (array) of size m
Hash table

05.05.2010

Schlussel s

0 1 2 i m-2 m-1

The memory is divided in m containers (buckets) of the same size.

Theory 1 - Hashing 3

UNI

FREIBURG

Examples:

= Compilers
i int Ox87C50FA4
j int 0x87C50FA8
x double 0x87C50FAC
name String Ox87C50FB2

= Environment variables (key, attribute) list
EDITOR=emacs
GROUP=mitarbeiter
HOST=vulcano
HOSTTYPE=sun4
LPDEST=hp5
MACHTYPE=sparc

= Executable programs
PATH="/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:

05.05.2010 Theory 1 - Hashing 4

UNI

FREIBURG

class TableEntry {
private Object key,value;

}

abstract class HashTable {

private TableEntry[] tableEntry;

private int capacity;

// Construktor

HashTable (int capacity) {
this.capacity = capacity;
tableEntry = new TableEntry [capacity];
for (int 1 = 0; 1 <= capacity-1; i1++)

tableEntry[1] = null;

+

// the hash function

protected abstract int h (Object key);

// insert element with given key and value (if not there already)
public abstract void insert (Object key Object value);

// delete element with given key (if there)

public abstract void delete (Object key);

// locate element with given key
public abstract Object search (Object key);
} // class hashTable

05.05.2010 Theory 1 - Hashing 5

UNI

FREIBURG

1. Size of the hash table
Only a small subset S of all possible keys (the universe) U actually occurs

2. Calculation of the adress of a data set
- keys are not necessarily integers
- index depends on the size of hash table

In Java:
publ

}

The universe U should be distributed as evenly as possibly to the numbers -231, ...,

2311,

05.05.2010

iIc class Object {

public int hashCode() {.}

Theory 1 - Hashing

UNI
FREIBURG

05.05.2010

Set of keys S

()
O
Univer % hash function h
se U % 0
of all o o
possib|e§ E 0,...,m-1
keys o o
® (@)
O
. hash table T
8
(]

(H(u) € [-231,231])
h(s) = hash address

h(s) = h(s’) << s and s” are synonyms with respect to h
address collision

Theory 1 - Hashing

UNI

FREIBURG

Definition: Let U be a universe of possible keys and {B,, . . .

h:U={0, .., m-1)

maps each key s € U to a value h(s)

(and the corresponding element to the bucket By q)).

,B.1} asetofm
buckets for storing elements from U. Then a hash function

The indices of the buckets also called hash addresses, the complete set

of buckets is called hash table.

05.05.2010

Bo

B,

m-1

Theory 1 - Hashing

UNI

FREIBURG

UNI
FREIBURG

A hash function h calculates for each key s the index of the associated
bucket.

It would be ideal if the mapping of a data set with key s to a bucket h(s)
was unique (one-to-one): insertion and lookup could be carried out in
constant time (O(1)).

In reality, there will be collisions: several elements can be mapped to the
same hash address. Collisions have to be addressed (in one way or
another).

05.05.2010 Theory 1 - Hashing 9

UNI
FREIBURG

Example for U: all names in Java with length <40 - |U | = 6240
If [lU | > m : address collisions are inevitable

Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

S| n

m m

of stored keys
size of hash table

Load factor &v: «

Assumption: table size m is fixed

05.05.2010 Theory 1 - Hashing 10

UNI

Requirements

A collision occurs if the bucket By, for a newly inserted element with key
S is not empty.

A hash function h is called perfect for a set S of keys if no collisions
occur for S.

If h is perfect and |S| =n, thenn<m.
The load factor of the hash table is n/m < 1.

A hash function is well chosen if

— the load factor is as high as possible,
— for many sets of keys the # of collisions is as small as possible,
— it can be computed efficiently.

05.05.2010 Theory 1 - Hashing 11

FREIBURG

Example: hash function for strings
public static int h (String s){
int k =0, m= 13;
for (int i=0; i < s.length(Q); i++)
k += (int)s.charAt (i1);
return (k%m);

}

The following hash addresses are generated for m = 13.

key s h(s)
Test 0
Hallo 2
SE 9
Algo 10

The greater the choice of m, the more perfect h becomes.

05.05.2010 Theory 1 - Hashing

12

UNI

FREIBURG

UNI

Choice of the hash function

The requirements high load factor and small number of collisions are in
conflict with each other. We need to find a suitable compromise.

For the set S of keys with |S| = n and buckets B, ..., B, +:
— for n > m conflicts are inevitable
— for n < m there is a (residual) probability P«(n,m) for the occurrence of

at least one collision.

How can we find an estimate for Py(n,m)?
For any key s the probability that h(s) =jwithj € {0, ..., m - 1} is:
P« [n(s) =] = 1/m, provided that there is an equal distribution.
We have Py(n,m) =1 - P_x(n,m),
if P-x(n,m) is the probability that storing of n elements in m buckets leads
to no collision.

05.05.2010 Theory 1 - Hashing 13

FREIBURG

On the probability of collisions

If n keys are distributed sequentially to the buckets B, ..., B4 (with
equal distribution), each time we have P [h(s) =] = 1/m.

The probability P(i) for no collision in stepiis P(i)=(m-(i- 1))/m
Hence, we have
m—1)...(m—n-+41)

mn

For example, if m = 365, P(23) > 50% and P(50) = 97% (“birthday
paradox”)

05.05.2010 Theory 1 - Hashing 14

UNI
FREIBURG

Hash fuctions used in practice:

see: D.E. Knuth: The Art of Computer Programming

For U = integer the [divisions-residue method] is used:
h(s)=(axs)modm (a#0,a#m, mprime)

For strings of characters of the form s = s;s, . . . S, 4 One can use:

h(s) = <<ki1 B’ 87;) mod 2“’) mod m

1=0

e.g. B = 131 and w = word width (bits) of the computer (w = 32 or w = 64 is
common).

05.05.2010 Theory 1 - Hashing 15

UNI

FREIBURG

Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method
h(k) =k mod m
How to choose of m?

Examples:

a) meven—h(k) even <= k even

Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)
b) m = 2P yields the p lowest dual digits of k

Rule: Choose m prime, and m is not a factor of any r' +/-j ,
where i and j are small, non-negative numbers and r is the radix of the
representation.

05.05.2010 Theory 1 - Hashing 16

UNI

FREIBURG

Choose constant 6,0 < 60 <1

1.Compute k6 mod 1 = k6 — | k0|
2. h(k) = |m(k6) mod 1]
Choice of m is uncritical, choose m = 2p :

Computation of h(k) :

o. I

p Bits = h(k)

05.05.2010 Theory 1 - Hashing

17

UNI

FREIBURG

FREIBURG

4
Example: =
6 = Y51 ~ 0.1680339
k= 123456
m = 10000
h(k) = [10000(123456 «0.1680339...mod 1)]

[10000(76300.41151...mod 1) |
141.151...] = 41

Of all numbers 0 <6 <1, % leads to the most even distribution.

05.05.2010 Theory 1 - Hashing 18

UNI
FREIBURG

Problem: if his fixed — there are S C M with many collisions

|dea of universal hashing:
Choose hash function h randomly

H finite set of hash functions

heH:U —{0,...,m—1}

Definition: H is universal, if for arbitrary x,y € U:

{heH:h(z)=h(y)}| 1
bl =

Hence: if X, y € U, H universal, h € H picked randomly

Pri (h(z) = h(y)) < =+

05.05.2010 Theory 1 - Hashing 19

UNI
FREIBURG

Assumptions:
= |U|=p(pprime)and |U| ={0, ..., p-1}
= Letae{l,...,p-1,be{0,...,p-1}and h,, : U > {0,...,m-1} be defined

as follows
h,p = ((ax+b) mod p) mod m

Then:
The set

H={h,p|1<a<p,0sb<p}

iS a universal class of hash functions.

05.05.2010 Theory 1 - Hashing 20

Hash table T of size 3, |U| =5

Consider the 20 functions (set H):

x+0 2x+0 3x+0 4x+0

X+1 2X+1 3x+1 4x+1

X+2 2X+2 3X+2 4x+2

X+3 2x+3 3x+3 4x+3

X+4 2x+4 3x+4 4x+4
each (mod 5) (mod 3)
and the keys 1 und 4
We get:
(1*1+0) mod 5 mod 3 =1 = (1"4+0) mod 5 mod 3
(1*1+4) mod 5 mod 3 =0 = (1"4+4) mod 5 mod 3
(4*1+0) mod 5 mod 3 =1 = (4"4+0) mod 5 mod 3
(4*1+4) mod 5 mod 3 =0 = (4"4+4) mod 5 mod 3

05.05.2010 Theory 1 - Hashing

21

UNI
FREIBURG

UNI

Treatment of collisions:

Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket By, is
already taken by another data set.

What can we do with colliding elements?

1. Chaining: Implement the buckets as linked lists. Colliding elements
are stored in these lists.

2. Open Addressing: Colliding elements are stored in other vacant
buckets. During storage and lookup, these are found through so-called
probing.

05.05.2010 Theory 1 - Hashing 22

FREIBURG

