
6 Hashing

Summer Term 2010

Robert ElsässerRobert Elsässer

The dictionary problem

Different approaches to the dictionary problem:pp y p

Previously: Structuring the set of currently stored keys: lists, trees,
graphsgraphs, ...

Structuring the complete universe of all possible keys: hashing

Hashing describes a special way of storing the elements of a set by as g desc bes a spec a ay o sto g t e e e e ts o a set by
breaking down the universe of possible keys.

The position of the data element in the memory is given by computing a so
called hash value directly from the key.called hash value directly from the key.

05.05.2010 Theory 1 - Hashing 2

Hashing

Dictionary problem:y p
Lookup, insertion, deletion of data sets (keys)

Place of data set d: computed from the key s of dPlace of data set d: computed from the key s of d
no comparisons
constant time

Data structure: linear field (array) of size m
Hash table

Schlüssel s

0 1 2 i m-2 m-1

Schlüssel s

…………. ………….

The memory is divided in m containers (buckets) of the same size

05.05.2010 Theory 1 - Hashing 3

The memory is divided in m containers (buckets) of the same size.

Hash tables - examples

Examples:p
Compilers
i int 0x87C50FA4
j int 0x87C50FA8

d bl 0 87C50FACx double 0x87C50FAC
name String 0x87C50FB2
...
Environment variables (key attribute) listEnvironment variables (key, attribute) list
EDITOR=emacs
GROUP=mitarbeiter
HOST=vulcano
HOSTTYPE=sun4
LPDEST=hp5
MACHTYPE=sparc
...
Executable programs
PATH=˜/bin:/usr/local/gnu/bin:/usr/local/bin:/usr/bin:/bin:

05.05.2010 Theory 1 - Hashing 4

Implementation in Java

class TableEntry {
private Object key,value;

}
abstract class HashTable {

private TableEntry[] tableEntry;
private int capacity;
// Construktor
HashTable (int capacity) {

this.capacity = capacity;this.capacity capacity;
tableEntry = new TableEntry [capacity];
for (int i = 0; i <= capacity-1; i++)

tableEntry[i] = null;
}}
// the hash function
protected abstract int h (Object key);
// insert element with given key and value (if not there already)
public abstract void insert (Object key Object value);public abstract void insert (Object key Object value);
// delete element with given key (if there)
public abstract void delete (Object key);
// locate element with given key

05.05.2010 Theory 1 - Hashing 5

public abstract Object search (Object key);
} // class hashTable

Hashing - problems

1. Size of the hash table
Only a small subset S of all possible keys (the universe) U actually occurs

2. Calculation of the adress of a data set
- keys are not necessarily integers
- index depends on the size of hash table

In Java:
public class Object {

...
public int hashCode() { }public int hashCode() {…}
...

}

The universe U should be distributed as evenly as possibly to the numbers -231, …,
231-1.

05.05.2010 Theory 1 - Hashing 6

Hash function (1)

Set of keys S

Univer-
U

hash function h

se U
of all
possible
keys

0,…,m-1

keys

hash table T

h(s) = hash address

h(s) = h(s´) s and s´ are synonyms with respect to h⇔

05.05.2010 Theory 1 - Hashing 7

address collision

Hash function (2)

Definition: Let U be a universe of possible keys and {B0, . . . ,Bm 1} a set of mp y { 0, , m-1}
buckets for storing elements from U. Then a hash function

h : U {0 m - 1}h : U {0, ... , m - 1}

maps each key s ∈ U to a value h(s)
(d th di l t t th b k t B)(and the corresponding element to the bucket Bh(s)).

The indices of the buckets also called hash addresses, the complete set
of buckets is called hash table.

B0

B1

Bm-1

…

…

05.05.2010 Theory 1 - Hashing 8

Address collisions

A hash function h calculates for each key s the index of the associated y
bucket.

It would be ideal if the mapping of a data set with key s to a bucket h(s)It would be ideal if the mapping of a data set with key s to a bucket h(s)
was unique (one-to-one): insertion and lookup could be carried out in
constant time (O(1)).

In reality, there will be collisions: several elements can be mapped to the
same hash address. Collisions have to be addressed (in one way or
another)another).

05.05.2010 Theory 1 - Hashing 9

Hashing methods

Example for U: all names in Java with length ≤ 40 |U | = 6240p g | |
If |U | > m : address collisions are inevitable

Hashing methods:Hashing methods:
1. Choice of a hash function that is as “good” as possible
2. Strategy for resolving address collisions

Load factor :

Assumption: table size m is fixed

05.05.2010 Theory 1 - Hashing 10

Requirements for good hash functions

Requirementsq

A collision occurs if the bucket Bh(s) for a newly inserted element with key
s is not emptys is not empty.

A hash function h is called perfect for a set S of keys if no collisions
f Soccur for S.

If h is perfect and |S| = n, then n ≤ m.
The load factor of the hash table is n/m ≤ 1.

A hash function is well chosen ifA hash function is well chosen if
– the load factor is as high as possible,
– for many sets of keys the # of collisions is as small as possible,
– it can be computed efficiently

05.05.2010 Theory 1 - Hashing 11

it can be computed efficiently.

Example of a hash function

Example: hash function for stringsp g
public static int h (String s){

int k = 0, m = 13;
for (int i=0; i < s.length(); i++)

k += (int)s.charAt (i);
return (k%m);

}

The follo ing hash addresses are generated for m 13The following hash addresses are generated for m = 13.

key s h(s)
Test 0
Hallo 2
SE 9
Al 10Algo 10

The greater the choice of m, the more perfect h becomes.

05.05.2010 Theory 1 - Hashing 12

g p

Probability of collision (1)

Choice of the hash function
The requirements high load factor and small number of collisions are in
conflict with each other. We need to find a suitable compromise.
For the set S of keys with |S| = n and buckets B B :For the set S of keys with |S| = n and buckets B0, ..., Bm-1:
– for n > m conflicts are inevitable
– for n < m there is a (residual) probability PK(n,m) for the occurrence of
at least one collisionat least one collision.

How can we find an estimate for PK(n,m)?
() {0 1}For any key s the probability that h(s) = j with j ∈ {0, ..., m - 1} is:

PK [h(s) = j] = 1/m, provided that there is an equal distribution.
We have PK(n,m) = 1 - P¬K(n,m),
if P¬K(n,m) is the probability that storing of n elements in m buckets leads
to no collision.

05.05.2010 Theory 1 - Hashing 13

Probability of collision (2)

On the probability of collisionsp y

If n keys are distributed sequentially to the buckets B0, ..., Bm-1 (with
equal distribution) each time we have P [h(s) = j] = 1/mequal distribution), each time we have P [h(s) = j] = 1/m.
The probability P(i) for no collision in step i is P(i) = (m - (i - 1))/m
Hence, we have

For example, if m = 365, P(23) > 50% and P(50) ≈ 97% (“birthday
paradox”)

05.05.2010 Theory 1 - Hashing 14

Common hash functions

Hash fuctions used in practice:p

see: D.E. Knuth: The Art of Computer Programming
F U i t th [di i i id th d] i dFor U = integer the [divisions-residue method] is used:

h(s) = (a × s) mod m (a ≠ 0, a ≠ m, m prime)
For strings of characters of the form s = s0s1 . . . sk-1 one can use:

e.g. B = 131 and w = word width (bits) of the computer (w = 32 or w = 64 is
)common).

05.05.2010 Theory 1 - Hashing 15

Simple hash functions

Choice of the hash function
- simple and quick computation
- even distribution of the data (example: compiler)

(Simple) division-residue method(Simple) division residue method
h(k) = k mod m

How to choose of m?
E lExamples:
a) m even h(k) even k even
Problematic if the last bit has a meaning (e.g. 0 = female, 1 = male)
b) m = 2p yields the p lowest dual digits of k
Rule: Choose m prime, and m is not a factor of any ri +/- j ,

where i and j are small, non-negative numbers and r is the radix of thewhere i and j are small, non negative numbers and r is the radix of the
representation.

05.05.2010 Theory 1 - Hashing 16

Multiplicative method (1)

Choose constant

1. Compute

2.

Choice of m is uncritical, choose m = 2p :

Computation of h(k) :Co putat o o ()

0,

k

θ

p Bits = h(k)

r0 r1

0,

05.05.2010 Theory 1 - Hashing 17

Multiplicative method (2)

Example:p

Of all numbers leads to the most even distribution.

05.05.2010 Theory 1 - Hashing 18

Universal hashing

Problem: if h is fixed there are with many collisionsy
Idea of universal hashing:

Choose hash function h randomly

H finite set of hash functions

Definition: H is universal, if for arbitrary x,y ∈ U:

Hence: if x y ∈ U H universal h ∈ H picked randomlyHence: if x, y ∈ U, H universal, h ∈ H picked randomly

05.05.2010 Theory 1 - Hashing 19

A universal class of hash functions

Assumptions:p
|U| = p (p prime) and |U| = {0, …, p-1}
Let a ∈ {1, …, p-1}, b ∈ {0, …, p-1} and ha,b : U {0,…,m-1} be defined
as followsas follows

ha,b = ((ax+b) mod p) mod m

Then:
The set

H = {ha,b | 1 ≤ a < p, 0 ≤ b < p}

is a universal class of hash functions.

05.05.2010 Theory 1 - Hashing 20

Universal hashing – example

Hash table T of size 3, |U| = 5, | |

Consider the 20 functions (set H):
+0 2 +0 3 +0 4 +0x+0 2x+0 3x+0 4x+0

x+1 2x+1 3x+1 4x+1
x+2 2x+2 3x+2 4x+2
x+3 2x+3 3x+3 4x+3x+3 2x+3 3x+3 4x+3
x+4 2x+4 3x+4 4x+4

each (mod 5) (mod 3)
1and the keys 1 und 4

We get:
(1*1+0) mod 5 mod 3 = 1 = (1*4+0) mod 5 mod 3() ()
(1*1+4) mod 5 mod 3 = 0 = (1*4+4) mod 5 mod 3
(4*1+0) mod 5 mod 3 = 1 = (4*4+0) mod 5 mod 3
(4*1+4) mod 5 mod 3 = 0 = (4*4+4) mod 5 mod 3

05.05.2010 Theory 1 - Hashing 21

Possible ways of treating collisions

Treatment of collisions:

Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket Bh(s) is
already taken by another data set.

What can we do with colliding elements?
1. Chaining: Implement the buckets as linked lists. Colliding elements
are stored in these lists.
2. Open Addressing: Colliding elements are stored in other vacant
buckets. During storage and lookup, these are found through so-called
probing.

05.05.2010 Theory 1 - Hashing 22

