/ Hashing: chaining

Summer Term 2010

Robert Elsasser

UNI

FREIBURG

UNI

Treatment of collisions:

Collisions are treated differently in different methods.

A data set with key s is called a colliding element if bucket By, is
already taken by another data set.

What can we do with colliding elements?

1. Chaining: Implement the buckets as linked lists. Colliding elements
are stored in these lists.

2. Open Addressing: Colliding elements are stored in other vacant
buckets. During storage and lookup, these are found through so-called
probing.

05.05.2010 Theory 1 - Hashing: Chaining 2

FREIBURG

UNI
FREIBURG

The hash table is an array (length m) of lists.
Each bucket is implemented by a list.

class hashTable {
List[] ht; // an array of lists
hashTable (int m){ // Construktor
ht = new List[m];
for (int 1 = 0; 1 < m; 1++)
ht[1] = new List(); // Construct a list

O

1. Direct chaining:
Hash table only contains list headers; the data sets are stored in the
lists.

2. Separate chaining:
Hash table contains at most one data set in each bucket as well as a list
header. Colliding elements are stored in the list.

05.05.2010 Theory 1 - Hashing: Chaining 3

Keys are stored in overflow lists
h(k) = k mod 7
o 1 2 3 4 &5 6

hash table T
pointer

> colliding elements

J
This type of chaining is also known as direct chaining.

05.05.2010 Theory 1 - Hashing: Chaining

UNI

FREIBURG

UNI
FREIBURG

Lookup key k
- Compute h(k) and overflow list T[h(k)]
- Look for k in the overflow list

Insert a key k
- Lookup k (fails)
- Insert k in the overflow list

Remove a key k
- Lookup k (successfully)

- Remove k from the overflow list

—— only list operations

05.05.2010 Theory 1 - Hashing: Chaining 5

class TableEntry {
private Object key,value;

}

abstract class HashTable {

private TableEntry[] tableEntry;

private iInt capacity;

// Constructor

HashTable (int capacity) {
this.capacity = capacity;
tableEntry = new TableEntry [capacity];
for (int 1 = 0; 1 <= capacity-1; i++)

tableEntry[1] = null;

by

// the hash function

protected abstract int h (Object key);

// insert element with given key and value (if not there already)
public abstract void insert (Object key Object value);
// delete element with given key (if there)
public abstract void delete (Object key);
// lookup element with given key
public abstract Object search (Object key);
} 7/ class hashTable

05.05.2010 Theory 1 - Hashing: Chaining

UNI

FREIBURG

UNI
FREIBURG

class ChainedTableEntry extends TableEntry {
// Constructor
ChainedTableEntry(Object key, Object value) {
super(key, value);
this.next = null;

}
private ChainedTableEntry next;

by
class ChainedHashTable extends HashTable {
// the hash function
public int h(Object key) {
return key.hashCode() % capacity ;
by

// lookup key in the hash table
public Object search (Object key) {
ChainedTableEntry p;
p = (ChainedTableEntry) tableEntry[h(key)];
// Go through the liste until end reached or key found
whille (p '= null && !p.key.equals(key)) {
p = p-next;
}

// Return result

it (p '= null)
return p.value;

else return null;

}

05.05.2010 Theory 1 - Hashing: Chaining 7

/* Insert an element with given key and value (if not there) */
public void insert (Object key, Object value) {
ChainedTableEntry entry = new ChainedTableEntry(key, value);
// Get table entry for key
int k = h (key);
ChainedTableEntry p;
p = (ChainedTableEntry) tableEntry [K];
it (p == null){
tableEntry[k] = entry;
return ;

by
// Lookup key

while (Ip.key.equals(key) && p.next = null) {
p = p-next;
}

// Insert the element (if not there)

iT (Ip.key.equals(key))
p.-next = entry;

05.05.2010 Theory 1 - Hashing: Chaining

UNI

FREIBURG

// Delete element with given key (if there)
public void delete (Object key) {
int k = h (key);
ChainedTableEntry p;
p = (ChainedTableEntry) TableEntry [Kk];
TableEntry[k] = recDelete(p, key);

}

// Delete element with key recursively (if there)
public ChainedTableEntry recDelete (ChainedTableEntry p, Object key) {
/* recDelete returns a pointer to the start of the list that p points to,
in which key was deleted */
it (p == null)
return null;
iT (p-key.equals(key))
return p.getNext();
// otherwise:
p.next = recDelete(p-next, key);
return p;

}

public void printTable O {.---}
} 7/ class ChainedHashTable

05.05.2010 Theory 1 - Hashing: Chaining 9

UNI

FREIBURG

public class ChainedHashingTest {
public static void main(String args[]){
Integer[] t= new Integer[args.length];

for (int 1 = 0; 1 < args.length; i++)

t[i] Integer.valueOf(args[i]);

ChainedHashTable h = new ChainedHashTable(7);

for (int 1 = 0; 1 <= t.length - 1; i++)
h_insert(t[i], null);

h.printTable (;

h.delete(t[0]); h.delete(t[1]);

h.delete(t[6]); h.printTable();

}
by
Call:
jJava ChainedHashingTest 12 53 5 15 2 19 43
Output:
0: | 0: 1|
1: 15 ->43 | 1: 15 1|
2:2 - 2:2-
3:-| 3: |
4: 53 | 4: -|
5:12->5->19 | 5:5->19 -]
6: -| 6: |
05.05.2010 Theory 1 - Hashing: Chaining

10

UNI

FREIBURG

UNI
FREIBURG

Uniform hashing assumption:

= All hash addresses are chosen with the same probability, i.e.:
Pr(h(k) =j)=1/m
» ndependent from operation to operation
Average chain length for n entries:
nm= «
Definition:
C’, = Expected number of entries inspected during a failed search

C,, = Expected number of entries inspected during a successful search

Analysis:
g Cl = «

an1+%

05.05.2010 Theory 1 - Hashing: Chaining 11

Advantages:

+ C,and C’, are small
+ &> 1 possible

+ real distances

+ suitable for secondary memory

Efficiency of lookup

@87 C,, (successful) C’, (unsuccessful)
0.50 1.250 0.50
0.90 1.450 0.90
0.95 1.457 0.95
1.00 1.500 1.00
2.00 2.000 2.00
3.00 2.500 3.00

Disadvantages:

- Additional space for pointers
- Colliding elements are outside the hash table

05.05.2010

Theory 1 - Hashing: Chaining 12

UNI
FREIBURG

UNI

Analysis of hashing with chaining:

worst case:
h(s) always yields the same value, all data sets are in a list.
Behavior as in linear lists.

average case:
— Successful lookup & delete:

complexity (in inspections) = 1 + 0.5 x load factor
— Failed lookup & insert:

complexity = load factor

This holds for direct chaining, with separate chaining the complexity is a
bit higher.

best case:
lookup is an immediate success: complexity € O(1).

05.05.2010 Theory 1 - Hashing: Chaining 13

FREIBURG

