8 Hashing: Open addressing

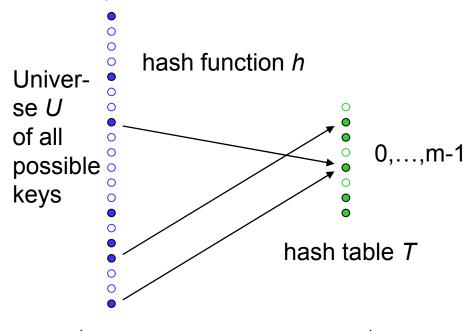
Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg

Hashing: General Framework

Set of keys S



$$\left(H(u)\subseteq[-2^{31},2^{31}]\right)$$

h(s) = hash address

 $h(s) = h(s') \iff s$ and s' are synonyms with respect to h address collision

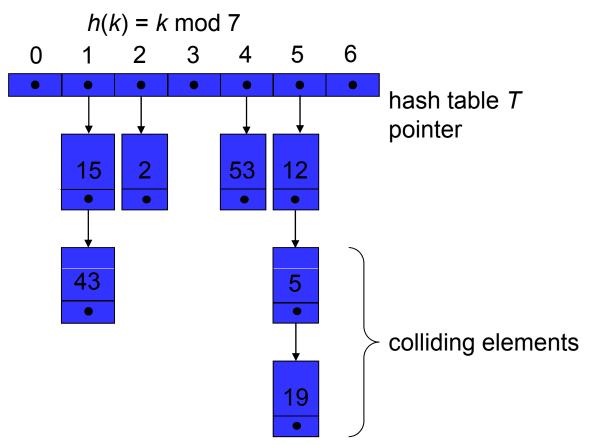
Possible ways of treating collisions

Treatment of collisions:

- Collisions are treated differently in different methods.
- A data set with key s is called a colliding element if bucket $B_{h(s)}$ is already taken by another data set.
- What can we do with colliding elements?
 - 1. Chaining: Implement the buckets as linked lists. Colliding elements are stored in these lists.
 - 2. Open Addressing: Colliding elements are stored in other vacant buckets. During storage and lookup, these are found through so-called probing.

Hashing by chaining

Keys are stored in overflow lists



This type of chaining is also known as direct chaining.

Open addressing

Idea:

Store colliding elements in vacant ("open") buckets of the hash table If T[h(k)] is taken, find a different bucket for k according to a fixed rule

Example:

Consider the bucket with the next smaller index:

General

Consider the sequence

$$(h(k) - j) \mod m$$

$$j = 0, ..., m-1$$

Even more general:

Consider the probe sequence

$$(h(k) - s(j,k)) \mod m$$

j = 0, ..., m-1, for a given function s(j,k)

Examples for the function

$$s(j,k) = j$$

(linear probing)

$$s(j,k) = (-1)^j * \left\lceil \frac{j}{2} \right\rceil^2$$
 (quadratic probing)

$$s(j,k) = j * h'(k)$$
 (double hashing)

Probe sequence

Properties of s(j,k)

Sequence

$$(h(k) - s(0,k)) \bmod m,$$

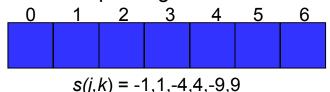
$$(h(k) - s(1,k)) \mod m$$

$$(h(k) - s(m-2,k)) \mod m$$

$$(h(k) - s(m-1,k)) \mod m$$

should result in a permutation of 0, ..., m-1.

Example: Quadratic probing



Critical

(Insert 4, 18, 25; delete 4; lookup 18, 25)

h(11) = 4

Open addressing


```
class OpenHashTable extends HashTable {
       // in HashTable: TableEntry [] T;
       private int [] taq;
       static final int EMPTY = 0;
       static final int OCCUPIED = 1;
       static final int DELETED = 2;
       // Constructor
       OpenHashTable (int capacity) {
           super(capacity);
           tag = new int [capacity];
           for (int i = 0; i < capacity; i++) {
               tag[i] = EMPTY;
       // The hash function
       protected int h (Object key) {...}
       // Function s for probe sequence
       protected int s (int j, Object key) {
           // quadratic probing
           if (j % 2 == 0)
               return ((j + 1) / 2) * ((j + 1) / 2);
           else
               return -((j + 1) / 2) * ((j + 1) / 2);
```

Open addressing - lookup


```
FREIBUR
```

```
public int searchIndex (Object key) {
       /* searches for an entry with the given key in the hash table and
          returns the respective index or -1 */
       int i = h(key);
       int j = 1; // next index of probing sequence
       while (tag[i] != EMPTY &&!key.equals(T[i].key)){
           // Next entry in probing sequence
           i = (h(key) - s(j++, key)) % capacity;
           if (i < 0)
               i = i + capacity;
       if (key.equals(T[i].key) && tag[i] == OCCUPIED)
           return i;
       else
           return -1;
   public Object search (Object key) {
       /* searches for an entry with the given key in the hash table and
          returns the respective value or NULL */
       int i = searchIndex (key);
       if (i >= 0)
           return T[i].value;
       else
           return null;
```

Open addressing - insert


```
public void insert (Object key, Object value) {
    // inserts an entry with the given key and value
    int j = 1; // next index of probing sequence
    int i = h(key);
    while (tag[i] == OCCUPIED) {
        i = (h(key) - s(j++, key)) % capacity;
        if (i < 0)
            i = i + capacity;
    }
    T[i] = new TableEntry(key, value);
    tag[i] = OCCUPIED;
}</pre>
```

Open addressing - delete


```
public void delete (Object key) {
          // deletes entry with given key from the hash table
        int i = searchIndex(key);
        if (i >= 0) {
                // Successful search
                tag[i] = DELETED;
        }
}
```

Test program

```
THE STATE OF THE S
```

```
public class OpenHashingTest {
    public static void main(String args[]) {
        Integer[] t= new Integer[args.length];
        for (int i = 0; i < args.length; i++)
            t[i] = Integer.valueOf(args[i]);

        OpenHashTable h = new OpenHashTable (7);
        for (int i = 0; i <= t.length - 1; i++) {
            h.insert(t[i], null);#
            h.printTable ();
        }
        h.delete(t[0]); h.delete(t[1]);
        h.delete(t[6]); h.printTable();
    }
}

Call:
    java OpenHashingTest 12 53 5 15 2 19 43</pre>
```

Output (quadratic probing):

(19) (15) (2) $\{43\}$ $\{53\}$ $\{12\}$

(5)

Probe sequences – linear probing

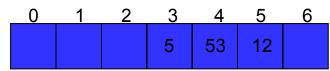
$$s(j,k) = j$$

Probe sequence for *k*:

$$h(k)$$
, $h(k)$ -1, ..., 0, m-1, ..., $h(k)$ +1,

Problem:

"primary clustering"



Pr (next object ends at position 2) = 4/7

Pr (next object ends at position 1) = 1/7

Long chains are extended with higher probability than short ones.

Efficiency of linear probing

Successful search:

$$C_n pprox rac{1}{2} \left(1 + rac{1}{(1-lpha)}
ight)$$

Failed search:

$$C_n' \approx \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

α	C_n (successful)	C' _n (failed)
0.50	1.5	2.5
0.90	5.5	50.5
0.95	10.5	200.5
1.00	_	-

Efficiency of linear probing decreases drastically as soon as the load factor α gets close to the value 1.

Quadratic probing

$$s(j,k) = (-1)^j * \lceil \frac{j}{2} \rceil^2$$

Probe sequence for *k*:

$$h(k)$$
, $h(k)+1$, $h(k)-1$, $h(k)+4$, ...

Permutation, if m = 4l + 3 is prime.

Problem: secondary clustering, i.e. two synonyms *k* and *k'* always run through the

same probe sequence.

Efficiency of quadratic probing

Successful search:

$$C_n \approx 1 - \frac{\alpha}{2} + ln\left(\frac{1}{(1-\alpha)}\right)$$

Failed search:

$$C'_n \approx \frac{1}{1-\alpha} - \alpha + \ln\left(\frac{1}{(1-\alpha)}\right)$$

α	\mathtt{C}_n (successful)	C' _n (failed)
0.50	1.44	2.19
0.90	2.85	11.40
0.95	3.52	22.05
1.00	_	_

Uniform probing

$$s(j,k) = \pi_k(j)$$

 π_k one of the m! permutations of $\{0, ..., m-1\}$

- only depends on k
- same probability for each permutation

$$C'_n \le \frac{1}{1-\alpha}$$

$$C_n \approx \frac{1}{\alpha} * ln\left(\frac{1}{(1-\alpha)}\right)$$

0.50 1.39 2	
0.90 2.56 10	
0.95 3.15 20	
1.00	

Random probing

Realization of uniform probing is very complex.

Alternative:

Random probing

s(j,k) = random number depending on k

s(j,k) = s(j',k) possible, but improbable

Double hashing

Idea: Choose another hash function h'

$$s(j,k) = j \cdot h'(k)$$

Probe sequence for *k*:

$$h(k), h(k)-h'(k), h(k)-2h'(k), ...$$

Requirement:

Probing sequence must correspond to a permutation of the hash addresses.

Hence

 $h'(k) \neq 0$ and h'(k) no factor of m, i.e. h'(k) does not divide m.

Example:

$$h'(k) = 1 + (k \mod (m-2))$$

Example

Hash functions: $h(k) = k \mod 7$

 $h'(k) = 1 + k \mod 5$

Insert sequence: 15, 22, 1, 29, 26



In this example we can do with a single probing step almost every time.

- Double hashing is as efficient as uniform probing.
- Double hashing is simpler to implement.