9 Dynamic tables

Summer Term 2010

Robert Elsasser

UNI

FREIBURG

Problem:
Maintenance of a table under the operations insert and delete such that

= the table size can be adjusted to the number of elements
= a fixed portion of the table is always filled with elements
= the costs for n insert or delete operations are in O(n).

Organisation of the table: hash table, heap, stack, etc.
Load factor o : fraction of table spaces of T which are occupied.
Cost model:

Insertion or deletion of an element causes cost 1, if the table is not filled yet.
If the table size is changed, all elements must be copied.

11.05.2010 Theory 1 - Hashing: Open Addressing 2

UNI

FREIBURG

UNI
FREIBURG

class dynamicTable {
private int [] table;

11.05.2010

private int size;
private iInt num;

dynamicTable O {

new int [1]; // initialize empty table

Theory 1 - Hashing: Open Addressing

UNI
FREIBURG

Double the table size whenever an element is inserted in the fully occupied
table!

public void insert (int x) {
IT (num == size) {
iInt[] newTable = new iInt[2*size];
for (int 1=0; 1 < size; i1I++)
insert table[i1] in newTable;
table = newTable;
size = 2*size;
+
Iinsert x in table;
num = num + 1;

11.05.2010 Theory 1 - Hashing: Open Addressing 4

t. = cost of the i-th insert operation

Worst case:

t.= 1, if the table was not full before operation i
t. = (i—1) + 1, if the table was full before operation i
Hence, n insert operations require costs of at most

(i)=0(n’)

i=1

Amortized worst case:
Aggregate analysis, accounting method, potential method

11.05.2010 Theory 1 - Hashing: Open Addressing

UNI

FREIBURG

T table with

k=T.num elements and

s = T.size spaces

Potential function

#(T)=2k-

11.05.2010

S

Theory 1 - Hashing: Open Addressing

UNI

FREIBURG

Properties

¢ = #To) = ¢ (empty table) = -1

Foralli>1:¢4=¢(T,)>0
Since ¢,- 9,20, Z g, is an upper bound for X t,

Directly before an expansion, k = s,
hence #T)=k=s.

Directly after an expansion, k = s/2,
hence §(T) =2k -s =0.

11.05.2010 Theory 1 - Hashing: Open Addressing

UNI

FREIBURG

UNI
FREIBURG

ki=# elements in T after the i-th operation

S, = table size of T after the i-th operation

Case 1: [i-th operation does not trigger an expansion]

11.05.2010 Theory 1 - Hashing: Open Addressing 8

Case 2: [I-th operation triggers an expansion]

11.05.2010

Theory 1 - Hashing: Open Addressing

UNI

FREIBURG

UNI
FREIBURG

Now: contract table, if the load is too small!

Goals:
(1) Load factor is always bounded below by a constant
(2) Amortized cost of a single insert or delete operation is constant.
First attempt:
Expansion: same as before
Contraction: halve the table size as soon as table is less than Y2

'aYaYal Bl allay

A
UuLLupicu

(after the deletion)!

11.05.2010 Theory 1 - Hashing: Open Addressing 10

n/2 times insert

(table fully occupied) S—
I: expansion EEEE ----- BEN
D, D: contraction EEEE ----- W0
l, | : expansion EEEN ----- EEE
D, D: contraction EEEE ----- WO

Total cost of the sequence
In/2,1,D,D,l1,1,D,D,... of length n:

11.05.2010 Theory 1 - Hashing: Open Addressing

Cost

UNI
FREIBURG

3n/2

n2+1

n/2+1

n2+1

11

Expansion: (as before) double the table size, if an element is inserted in
the full table.
Contraction: As soon as the load factor is below ¥, halve the table size.

Hence:
At least %, of the table is always occupied, i.e.
Yo < o(T) <1

delete operations?

11.05.2010 Theory 1 - Hashing: Open Addressing

12

UNI
FREIBURG

k=T.num, s=T.size, a=Kk/s

Potential function ¢

¢(T)={

2k —s,if a 21/2
s/2-k,if a<1/2

Theory 1 - Hashing: Open Addressing

UNI
FREIBURG

2k —s,if ¢ 21/2
s/2-k,if a<1/2

¢(T)={

Directly after an expansion or contraction
of the table:

s =2k, hence ¢(T) =0

11.05.2010 Theory 1 - Hashing: Open Addressing

UNI
FREIBURG

14

I-th operation: k; =k, + 1

Case 1: o1 =%

Case 2: o1 < %2

Case 2.1: o< %2

Case 2.2: o> Y2

11.05.2010

Theory 1 - Hashing: Open Addressing

15

UNI

FREIBURG

Case 2.1: ¢, <Y, ox< Y2 (nNO expansion)

Potential function ¢

UNI
FREIBURG

2k —s, if a >1/2
(T)= |
s/2-k,iIf a<1/2

Theory 1 - Hashing: Open Addressing

Case 2.2: o, <Y, o =% (no expansion)

Potential function ¢

UNI
FREIBURG

2k —s, if a >1/2
#(T)= .
s/2-k,If a<l/?2

Theory 1 - Hashing: Open Addressing

kl = ki-l = 1

Case 1: o <2

Case 1.1: deletion causes no contraction
Si= Sja

Potential function ¢
2k —s,if ¢ >21/2
s/2-k,if a<l/2

¢(T)={

11.05.2010 Theory 1 - Hashing: Open Addressing

18

UNI
FREIBURG

UNI
FREIBURG

kl = ki-l = 1

Case 1: o <2

Case 1.2: ¢, <% deletion causes a contraction
2S,=S;_4
Kip = Si4/4

Potential function ¢

2k —s, if a >1/2
#(T)= |
s/2-k,iIf a<1/2

11.05.2010 Theory 1 - Hashing: Open Addressing 19

Case 2: ¢;; 2% no contraction

S.

. =S

g kKi=kig-1

Case 2.1: ¢ 2 %2

Potential function ¢

A

¢(T)— 2k —s, If a >1/2
s/2-k,If a<l/?2

11.05.2010 Theory 1 - Hashing: Open Addressing

20

UNI

FREIBURG

Case 2: ¢;; 2% no contraction

S.

. =S

g kKi=kig-1

Case 2.2: ;< 2

Potential function ¢

- 2k —s, if a >1/2
H(T)= |
s/2—-Kk,If a<l/2

11.05.2010 Theory 1 - Hashing: Open Addressing

UNI
FREIBURG

21

