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Dynamic tables

Problem: 
Maintenance of a table under the operations insert and delete such that
the table size can be adjusted to the number of elements 
a fixed portion of the table is always filled with elementsa fixed portion of the table is always filled with elements 
the costs for n insert or delete operations are in O(n).

O i ti f th t bl h h t bl h t k tOrganisation of the table: hash table, heap, stack, etc.
Load factor αT : fraction of table spaces of T which are occupied.
Cost model:
Insertion or deletion of an element causes cost 1, if the table is not filled yet. 

If the table size is changed, all elements must be copied.
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Initialisation

class dynamicTable {y {

private int [] table;

private int size;
i t i tprivate int num;

dynamicTable () {
table = new int [1]; // initialize empty table
size = 1;
num = 0; 

}
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Expansion strategy: insert

Double the table size whenever an element is inserted in the fully occupied y p
table!

public void insert (int x) {
if (num == size) {

int[] newTable = new int[2*size];
for (int i=0; i < size; i++)

insert table[i] in newTable;
table = newTable;
size = 2*size; 

}
insert x in table;
num = num + 1; 

}
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Insert operation in an initially empty table

ti = cost  of the i-th insert operation

Worst case:

ti = 1, if the table was not full before operation i
ti = (i – 1) + 1, if the table was full before operation i
Hence, n insert operations require costs of at most 
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Amortized worst case:
Aggregate analysis, accounting method, potential method
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Potential method

T table with

• k = T.num elements  and 

• s = T.size spaces

Potential function
φ (T) = 2 k – s
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Properties of the potential function

Propertiesp

• φ0 =  φ(T0) = φ (empty table) = -1

• For all i ≥ 1 : φi = φ (Ti) ≥ 0 
Since φn - φ0 ≥ 0,  Σ ai is an upper bound for  Σ ti 

• Directly before an expansion, k = s, 
hence  φ(T) = k = s.

• Directly after an expansion, k = s/2,
hence φ(T) = 2k – s = 0.
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Amortized cost of insert (1)

ki = # elements in T after the i-th operationki  # elements in T after the i th operation

si = table size of T after the i-th operation

Case 1: [ i-th operation does not trigger an expansion]

11.05.2010 Theory 1 - Hashing: Open Addressing 8



Amortized cost of insert (2)

Case 2: [ i-th operation triggers an expansion][ p gg p ]
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Insertion and deletion of elements

Now: contract table, if the load is too small!Now: contract table, if the load is too small!

Goals: 
(1) Load factor is always bounded below by a constant

(2) Amortized cost of a single insert or delete operation is constant.

First attempt: 
• Expansion: same as before

• Contraction: halve the table size as soon as table is less than ½ 
occupiedoccupied 
(after the deletion)!
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„Bad“ sequence of insert and delete operations

Cost

n/2 times insert
(table fully occupied)

3 n/2

I: expansion n/2 + 1

D, D: contraction n/2 + 1

I, I : expansion n/2 + 1

D, D: contraction

Total cost of the sequence 
In/2,I,D,D,I,I,D,D,... of length n:
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Second attempt

Expansion: (as before) double the table size, if an element is inserted inExpansion: (as before) double the table size, if an element is inserted in 
the full table.

Contraction: As soon as the load factor is below ¼, halve the table size.

Hence:
At least ¼ of the table is always occupied, i.e.

¼  ≤ α(T) ≤ 1

Cost of a sequence of insert andCost of a sequence of insert and  

delete operations?
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Analysis: insert and delete

k = T.num,   s = T.size, α = k/s, ,

P t ti l f ti φPotential function φ
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Analysis: insert and delete

( )
⎩
⎨
⎧

<−
≥−

=
2/1if2/

2/1 if ,2
α
α

φ
ks
sk

T
⎩ < 2/1if,2/ αks

Directly after an expansion or contraction 
of the table:

s = 2k, hence φ(T) = 0

11.05.2010 Theory 1 - Hashing: Open Addressing 14



insert

i-th operation: ki = ki 1 + 1i th operation: ki  ki-1  1  

Case 1: αi-1 ≥ ½

Case 2: αi-1 < ½

Case 2.1: αi < ½

Case 2.2: αi ≥ ½Case 2.2: αi ≥ ½
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insert

Case 2.1: αi 1 < ½, αi < ½  (no expansion)i-1 ½, i ½ ( p )

Potential function φ
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insert

Case 2.2:  αi 1 < ½, αi ≥ ½  (no expansion)i-1 ½, i ½ ( p )

Potential function φ
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delete

ki = ki 1 - 1i i-1

Case 1: αi-1 < ½ 

Case 1.1: deletion causes no contraction
si = sj-1

⎧

Potential function φ
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delete

ki = ki 1 - 1i i-1

Case 1: αi-1 < ½ 

Case 1.2:  αi-1 < ½  deletion causes a contraction
2si = si –1 

ki-1 = si-1/4

Potential function φ
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delete

Case 2: αi 1 ≥ ½ no contractioni-1 ½

si = si –1 ki = ki-1 - 1

Case 2.1: αi-1 ≥ ½

⎧ ≥ 2/1if2k

Potential function φ
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delete

Case 2: αi 1 ≥ ½  no contractioni-1 ½

si = si –1 ki = ki-1 - 1

Case 2.2: αi < ½
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