
11 Text search

Summer Term 2010

Robert ElsässerRobert Elsässer



Text search

Different scenarios:

Dynamic texts
T t dit• Text editors

• Symbol manipulators

Static texts
• Literature databases
• Library systems• Library systems
• Gene databases
• World Wide Web

19.05.2010 Theory 1 - Text search 2



Text search

Data type string:yp g
• array of character
• file of character

li t f h t• list of character

Operations: (Let T, P be of type string)
Length: length ()
i-th character:    T [i ]
concatenation: cat (T P) T Pconcatenation:  cat (T, P)  T.P

19.05.2010 Theory 1 - Text search 3



Problem definition

Input:p
Text        t1 t2 .... tn   ∈ Σn

Pattern   p1p2 ... pm ∈ Σm

Goal:
Find one or all occurrences of the pattern in the text, 
i e shifts i (0 ≤ i ≤ n m) such thati.e. shifts i (0 ≤ i ≤ n – m) such that

p1 =  ti+1

p2 =  ti+2

tpm = ti+m

19.05.2010 Theory 1 - Text search 4



Problem definition

i i 1 i

Text:   t1 t2 ....            ti+1 ....           ti+m ….. tn

i       i+1                      i+m

Pattern: p1 ....            pm

Estimation of cost (time) :( )

1. # possible shifts: n – m + 1 # pattern positions: m
O(n·m)O(n m)

2.   At least 1 comparison per m consecutive text positions:
Ω(m + n/m)Ω(m + n/m)

19.05.2010 Theory 1 - Text search 5



Naïve approach

For each possible shift  0 ≤ i ≤ n – m check at most m pairs of characters.
Whenever a mismatch occurs, start with the next shift.

textsearchbf := proc (T : : string, P : : string)
#  Input:   Text T und Muster P
# Output:  List L of shifts i, at which P occurs in T 

n := length (T); m := length (P);
L []L := [];
for i from 0 to n-m {

j := 1;
while j ≤ m and T[i+j] = P[j]while j ≤ m and T[i+j] = P[j]

do j := j+1 od;
if j = m+1 then L := [L [] , i] fi;

}}
RETURN (L)

end;

19.05.2010 Theory 1 - Text search 6



Naïve approach

Cost estimation (time):( )

0  0  ...                 0   ...   0  ...   0  0   ...

0   ...   0  ...   0  1
i

Worst Case: Ω(m·n)

In practice: mismatch often occurs very earlyIn practice: mismatch often occurs very early

running time ~ c·n

19.05.2010 Theory 1 - Text search 7



Method of Knuth-Morris-Pratt (KMP)

Let ti and pj+1 be the characters to be compared:i pj+1 p

t1 t2 ...               ...       ti ...              ...
=   =  =    =      ≠
p1 ...      pj pj+1 ...     pm

If, at a shift, the first mismatch occurs at  
ti and pj+1, then:
• The last j characters inspected in T equal the first j characters in P• The last j characters inspected in T equal the first j characters in P.
• ti ≠ pj+1 

19.05.2010 Theory 1 - Text search 8



Method of Knuth-Morris-Pratt (KMP)

Idea:

Determine j´ = next[j] < j such that ti can then be compared with pj´+1.

Determine j´< j such that P1...j´= Pj-j´+1...j.

Find the longest prefix of P that is a proper suffix of P 1 jFind the longest prefix of P that is a proper suffix of P 1... j.

t1 t2 ...               ...              ti ...              ...
=   =  =    =      ≠
p1 ...      pj pj+1 ...     pm

19.05.2010 Theory 1 - Text search 9



Method of Knuth-Morris-Pratt (KMP)

Example for determining next[j]:p g [j]

t1 t2 ... 01011   01011  0              ...
01011 01011 101011   01011   1

01011   01011   1

next[j] = length of the longest prefix of P that is a proper suffix of P1 ...j.

19.05.2010 Theory 1 - Text search 10



Method of Knuth-Morris-Pratt (KMP)

⇒for P = 0101101011,  next = [0,0,1,2,0,1,2,3,4,5] :[ ]

1 2 3 4 5 6 7 8 9 10

0 1 0 1 1 0 1 0 1 1

0

0 1

0

0 10 1

0 1 0

0 1 0 1

0 1 0 1 1

19.05.2010 Theory 1 - Text search 11



Method of Knuth-Morris-Pratt (KMP)

KMP := proc (T : : string, P : : string)p ( g g)
# Input: text T and pattern P
# Output: list L of shifts i at which P occurs in T

n := length (T); m := length(P);n :  length (T); m :  length(P);
L :=  []; next := KMPnext(P);
j  :=  0;
for i from 1 to n dofor i from 1 to n do

while j>0 and T[i] <> P[j+1] do j := next [j] od;
if T[i]  = P[j+1]  then j := j+1 fi;
if j = m then L := [L[] i m] ;if j = m then L := [L[] , i-m] ;

j  := next [j]
fi;

dod;
RETURN (L);

end;

19.05.2010 Theory 1 - Text search 12



Method of Knuth-Morris-Pratt (KMP)

Pattern: abracadabra, next = [0,0,0,1,0,1,0,1,2,3,4], [ , , , , , , , , , , ]

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...
| | | | | | | | | | ||   |   |   |   |   |   |   |   |   |   | 
a  b  r  a  c  a  d  a  b  r  a

next[11] = 4

a b r a c a d a b r a b r a b a b r a ca  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...
- - - - | 
a  b  r  a  c
next[4] = 1

19.05.2010 Theory 1 - Text search 13



Method of Knuth-Morris-Pratt (KMP)

a  b  r  a  c  a  d  a  b  r  a  b   r  a  b  a  b  r  a  c  ...
- |   |   |   |
a  b  r  a  c

t [4] 1next [4] = 1

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...
- |   |
a  b  r  a  c
next [2] = 0next [2] = 0

a  b  r  a  c  a  d  a  b  r  a  b  r  a  b  a  b  r  a  c  ...
|   |   |   |   |
a  b  r  a  c

19.05.2010 Theory 1 - Text search 14



Method of Knuth-Morris-Pratt (KMP)

Correctness:

t1 t2 ...               ...               ti ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      ≠

Situation at start of the for-loop:
P = T and j ≠ mP1...j = Ti-j...i-1 and j ≠ m

if j = 0: we are at the first character of P
if j ≠ 0: P can be shifted while j > 0 and ti ≠ pj+1

19.05.2010 Theory 1 - Text search 15



Method of Knuth-Morris-Pratt (KMP)

If T[i] = P[j+1], j and i can be increased (at the end of the loop).

Wh P h b d l t l (j ) iti f dWhen P has been compared completely (j = m), a position was found, 
and we can shift.

19.05.2010 Theory 1 - Text search 16



Method of Knuth-Morris-Pratt (KMP)

Time complexity:p y

• Text pointer i is never reset
T t i t i d tt i t j l i t d t th• Text pointer i and pattern pointer j are always incremented together

• Always: next[j] < j;  
j can be decreased only as many times as it has been increased. 

The KMP algorithm can be carried out in time O(n), 
if the next-array is known.

19.05.2010 Theory 1 - Text search 17



Computing the next-array

next[i] = length of the longest prefix of P that is a proper suffix of P1...i .[ ] g g p p p 1 i

next[1] = 0
L t t[i 1] jLet next[i-1] = j:

= = = = ≠
p1 p2 ...               ...               pi ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      ≠

19.05.2010 Theory 1 - Text search 18



Computing the next-array

Consider two cases:

1) pi = pj+1 next[i] = j + 1 

2) pi ≠ pj+1 replace j by next[ j ] , until pi = pj+1 or  j = 0.
If pi = pj+1, we can set next[i] = j + 1, j
otherwise next[i] = 0. 

19.05.2010 Theory 1 - Text search 19



Computing the next-array

KMPnext := proc (P : : string)p ( g)
#Input    :  pattern P
#Output :   next-Array for P

m := length (P);m :  length (P);
next := array (1..m);
next [1] := 0;
j := 0;j := 0;
for i from 2 to m do

while j > 0 and P[i] <> P[j+1]
d j t [j] ddo j := next [j] od;

if P[i] = P[j+1] then j := j+1 fi;
next [i] := j 

od;
RETURN (next);

end;

19.05.2010 Theory 1 - Text search 20



Running time of KMP

The KMP algorithm can be carried out in time O(n + m).g ( )

C t t h b f t ?Can text search be even faster?

19.05.2010 Theory 1 - Text search 21


