14 Foundation of Programming Languages
and Software Engineering:
Abstract Data Types

Summer Term 2010

Robert Elsasser

UNI

FREIBURG

UNI
FREIBURG

@ Problem-specific concepts
e Search trees
@ Lists
e Queues

@ ...
@ Implementations of these concepts may have different
characteristics:
e Memory usage
e Efficiency
@ Implementations should be exchangeable

@ Abstract over the concepts, use ADTs!

e Functional specification
e Implementation independent
e Different implementations of a single ADT are possible

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 2

Let 2 be a signature.
@ A X-identityisapairs~te T(x,X) x T(X, X).
@ An ADT is a pair (X, &) where

@ 2 is a signature,

@ ECT(X.X)x T(X.X)is aset of ¥ -identities.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI

FREIBURG

An ADT for natural numbers

Y pap = {zero(ﬂ}, succ“)}

Enar — @

An ADT for integers

Z:‘m — {ZEI‘D(U}ﬁpredU}ﬁ SLICC(”}
Eint = {pred(succ(x)) = x,
succ(pred(x)) = x}

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI
FREIBURG

UNI
FREIBURG

@ A datatype is a 2 -algebra D.

@ A datatype D implements the ADT (X, £) iff every
identity s = t € £ isvalid in D.
(Note: We shall refine this definition later.)

@ Anidentity s ~ tisvalid in a X-algebra A = (A. o) iff
j(s) = j(r) for all variable assignments 7 : X — A.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 5

Implementation 1

@ Dnat; = (N, ay), ai(zero) = 0, aq(succ)(x) = x + 1.
@ No identities, so all are valid.

@ The function a is bijective.

UNI

09.06.2010

Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

FREIBURG

UNI

Implementation 1

@ Dnat; = (N, ay), ai(zero) = 0, aq(succ)(x) = x + 1.
@ No identities, so all are valid.
@ The function a is bijective.

| A

Implementation 2
@ Dnat, = ({0,1,2,3}, ayp), as(zero) =0,
as(succ)(x) = (x+1) mod 4.
@ No identities, so all are valid.

@ The function a is not injective (but surjective).
ap(zero) = 0 = ap(succ(succ(succ(succ(zero)))))

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 7

FREIBURG

UNI
FREIBURG

Implementation 1

@ Dinty = (Z,By), Ji(zero)() =0
F1(succ)(x) =x + 1
F1(pred)(x) =x — 1

@ For arbitrary 7 : {x} — Z we have
f(pred(succ(x))) =(J(x)+1)—1= j(X)
J(succ(pred(x))) = (T (x) — 1) + 1 = J(x)

o 31 is surjective but not injective. Consider

Fi(zero) = 0 = Ji(succ(pred(zero)))

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 8

Implementation 2

Q }Dlﬂfg — ({0.. 1: 2: 3}" 32)’
By(zero)() =0
Po(succ)(x) =x+1 mod 4

Cfemenlildl = x —1 otherwise

@ For arbitrary 7 : {x} — Z we have
j(pred(succ(){))) = ..'}:Z(X)
J (suce(pred(x))) = J(x)

o 52 IS surjective but not injective.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI
FREIBURG

A Non-implementation
@ Dint; = (N. 33)
Ba(zero)() =0
Ba(succ)(x) =x+1

X—1 x>0

Ba(pred)(X) = {0 =0

@ Not an implementation:
For 7 : X — Nwith 7(x) = 0 we have

J(succ(pred(x))) =1+ 0 = J(x)

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 10

UNI
FREIBURG

@ Want to rule out implementations such as Dnat, and
ﬁﬂfg

@ Definition of “implementation” is too weak
@ Needed: restriction on function a
@ « is not necessarily injective (see Dinty)

e |Idea: @ must be injective on the equivalence classes
induced by the identities of an ADT.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 11

UNI
FREIBURG

UNI
FREIBURG

Suppose R is an equivalence relation on some set M.

@ Theset [x]p:={y e M| xRy} is called the
equivalence class of x.

@ ¥ € [Xx]p is called a representative of [x]g.

@ The quotient of M with respect to A is the set of
equivalence classes induced by R, written
M/,q = {[X]F,' ‘ X € M}

Note: For equivalence classes [x|g and [y]|r We have either
[X]la = [¥la or [X]a 1 [y]a = 0.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 12

UNI
FREIBURG

Suppose 2 is a signature and let A be an equivalence
relation on T(X, X).

@ R s a congruence relation iff A is closed under
2_-operations, i.e. s A s’ implies
f(ty,....s,....tn) Rf(ty,....s,.... ;) forany n > O,
fey™ ands. s ty,....t,€ T(X.X).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 13

UNI

Lemma

Let 2 be a signature and R be a congruence on T(Xx, X).
Foralln>0,feX™ andt,... t, € T(X,X), define o as

¥

follows:

FAH b1 ... [tlr) = [f(t. t)]A

Then (T(X, X)/g.) is a X-algebra.

Proof. We need to show that o is well-defined. Suppose

n>0,fexX™ ands t,...,s,t, € T(L X).If
st Rty,...,sp Rtythen f(sy,...,8,) Rf(ty,...,t,). Hence,
[f(s1....,8n)]r=[f(ti,...,)]s because R is a congruence.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 14

FREIBURG

UNI
FREIBURG

Let (X, &) be an ADT. We define a relation ~¢ on T(X, X) as
the smallest relation such that

X

¢ IS @ congruence relation;
@ ~ccontains &, i.e. s~ t € £ implies s ~¢ f;
@ ~ Is closed under substitutions, i.e. s ~¢ t implies

o(8) ~¢ o(t) for any substitution o and all
s,te T(X,X).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types il

UNI
FREIBURG

Congruence classes of ~¢

Cint

Y it = {zero(n),pred“), succ“)}

Eint = {pred(succ(x)) = X,
succ(pred(x)) = x}

[zero]~, = {zero,
succ(pred(zero)),
pred(succ(zero)),
succ(succ(pred(pred(zero)))),... }

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 16

UNI
FREIBURG

A datatype D = (M, o) implements ADT (%, &) with
constructors [C X if

@ (M,«)is a 2-algebra
@ All identities from & are valid in M
@ Foralls,te T(I',0): s ~¢ tiff a(s) = a(t)

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 17

UNI

Let (X, &) be an ADT with constructors ' € 2. Then
D = (T(X,0)/~..a”¢) is an implementation of (X, &).

Proof. D is a 2-algebra because ~¢ is a congruence.
An easy term induction shows that

a~e(t) = [t]. (1)

holds for all t € T(X, ().
By using (1), we show for all s, t € T(I', () that s ~ t iff
a~E(s) = a~E(t).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 18

FREIBURG

UNI
FREIBURG

We still need to establish the validity of the identities in &.
Suppose J is an interpretation function. We define a
substitution o as follows:

o(X) =

x if x does not appear in s or t,
t otherwise, where J(x) = [{]~,

By term induction, we then show for all r € T(X, X)
J(r)=a>(o(r)) (2)

From s~ t € £, we get s ~; [, SO o(S) ~¢ o(t) holds. We
finish to proof by calculating

Fa

T(s) 2 a=(o(s)) Y [0(5)]we = [o(D)]= 2 a=(a(t)) & T (1)

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 19

UNI
FREIBURG

Nat as a constructor-based ADT (CADT)

CADT: X ={z,s},E={},T =%
Implementation: (N, a4) with a4(z)() = 0 and
aq(s)(x) =x + 1
@ (N, ay) is Z-algebra
@ No identities to check
@ Since £ = (), ~¢ is =. Suppose s,t € T(I',).
o If s =tthen ai(s) = a1(t)
o Suppose s # t. Then s = s"(t) with n > 0. Hence,
a1(s) = a1(t) + n # a1 (t).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 20

UNI
FREIBURG

Dint; is not an implementation of the natural
numbers

CADT: L ={z,s}, & ={},T
(10,1,2,3}, az) with ax(z)() =
IS not an implementation.
@ ({0,1,2,3},a») is L-algebra
@ No identities to check
@ Since & =), ~¢is =.
We have z # s*(z) but as(z) = 0 = a,(s*(z)).

_-2(5)()() = (x+ 1) mod 4

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 21

Alternative implementation of the natural numbers
CADT: X ={z,s},&E={},T =%
Implementation: ({a}”*, asz) with az(z)() = ¢, asz(s)(w) = aw
@ ({a}*, as)is L-algebra
@ No identities to check

@ Since & =0, ~¢ is =.
o If s = tthen as(s) = as(t)
o Suppose s # t. Then s = s"(t) with n > 0. Hence,
33(5) — 33(0 a...a#+ 33(3)

n

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 22

UNI
FREIBURG

UNI
FREIBURG

Suppose [' =1 = {z.s.p}, & = {s(p(X)) = X.p(s(X)) = X}
Question: Whatis T(X,())/~.?
Answer: Give a representative for every equivalence class.

Lemma

For every term t € T(X, (), exactly one of the following
propositions holds

A There exists n > 0 such that t € [s"(z)]-..
B telz]...
C There exists n > 0 such that t € [p"(z)] ..

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 23

UNI
FREIBURG

The proof is by term induction over t.
@ t =z so B holds.

@ Induction Step for t = s(t'). By the IH, one of the
following holds for t'.

A lft ~¢ s("(z) forn >0
then s(t') ~¢ s(s(”}(z)) — s(”"'”(z).
Since n+ 1 > 0 we have case A.

B If t' ~¢ z then s(t') =¢ s(z).
We have case A with n = 1.

C Ift' ~¢ pM(z) forn >0
then s(") ~e s(p (”}(z).
If n =1 then s(p(z)) ~¢ z so case B holds.

n—

If n > 1 then s(p(p!)())) ~¢ pl"")(z), so case C
holds.

@ Induction step for p(t) analogous.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 24

If follows that

(s"(z)|n > 0} U {z} U {p"(z)|n > 0O}

is a set of representatives for T(X,0)/ ..

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

Lemma

Suppose n > 0, m > 0. Then we have
@ z #¢ s(z),
® z #: p'(z),
® s"(z) #s p"(2),
@ s"(z) #¢ s"(z) provided n # m, and
@ p'(z) #%¢ p™(z) provided n = m.

25

UNI
FREIBURG

Integers as a CADT

CADT:T =¥ = {z5.p}, £ = {s(p(x)) = X.p(s(x)) = x}
Implementation: (Z, o) with
a(z) = 0,a(s)(x) = X + 1, a(p)(x) = x — 1

@ (Z,«) is a 2-algebra

@ All identities are valid (as seen before)

@ An easy term induction shows for all t € T(X, () that
o if t ~=¢ z then a(t) =0,
o if t ~~¢ s"(z) then a(t) = n, and
o if t ¢ p"(z) then a(t) = —n.
Hence, if s ~¢ t then a(s) = a(t).
Conversely, if s %¢ t then a(s) # a(t) because a maps
different representatives to different integers.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 26

UNI
FREIBURG

Calculating with ADT =
applying term operations +

determining set of representatives.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 27

UNI
FREIBURG

UNI

Definition (Linear Data Structure)

An ADT is called a linear data structure (LDS) iff there is an
Implementation with simple lists.

@ LDS are aggregates, i.e. one element contains several
elements of another sort.
@ T[ypes are now parameterized.

e Examples: List(A), Array(A)
@ A s not a fixed type but rather a type parameter.
e Compare with Java Generics: List<A>, A[]

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 28

FREIBURG

UNI
FREIBURG

Definition (Signature for Lists)
datatype List(A)

operations empty : — List(A)
cons . AX LiS’[(A) — List(A)
head : List(A) —
tail : List(A) — L|st()
empty? : List(A) — Boolean
(A)
(A)

x List(A) — List(A)
— Nat

app . List
len - List

@ Definition parameterized over A

@ Constructors: empty. cons

@ Definition uses more than one type: More general notion
of signature and arity needed

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 29

Definition (Identities for Lists)

identities head(cons(a,/)) = a

tail(cons(a,l)) =1/

empty?(empty) = true
empty?(cons(a,/)) = false
app(empty, V) =V

app(cons(a, /), v) = cons(a, app(/, v))
len(empty) = zero

len(cons(a,/)) = succ(len(/))

09.06.2010

Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

30

UNI
FREIBURG

Let S be a set of sorts. A heterogeneous signature X is a set
of function symbols where each f € ¥ Is associated with an

arity s — s'where s € S* and s’ € S.

@ Arity of empty: ¢ — List(A)
@ Arity of cons: (A, List(A)) — List(A)

Previous definitions need to be generalized as well:
@ An algebra has different carrier sets for every sort.
@ Terms must respect the sorts associated with a function
symbol to rule out illegal terms such as cons(1,1).

@ Generalize congruence relation

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI
FREIBURG

31

UNI
FREIBURG

@ head and tail are partial operations:
@ head(empty) =77
o tail(empty) =77
@ One possible solution: Introduce a distinguished
element L for every sort s
o head(empty) = la
Q tail(empty) = Liist(a)
@ All operations are strict in L, I.e. if one argument is g
the result is Lg
Q head(J—List[A}) = 1A
o tail(Llyisya)) = Luista)
@ empt}f?(lLisl(A}) — | Boolean
o len(Lyjsta)) = LNat
Q

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 32

Let f be a term of type List(A) without variables. Then one of
the following holds:

@ t~ctandt € T(I',()) where I = {empty, cons}.
@ [~ Liista)

Proof. The proof is by induction on .

@ Case t = empty € T(I',). Trivial.

@ Case t = cons(a,s)withs~¢ s"and s’ € T(I', ().
Hence, cons(a, s) ~¢ cons(a,s’) € T(I',).

@ Case t = head(s) so t does not have type List(A).

@ Case t =tail(s)with s~¢ s"and s T(I,0).
If ' = empty then ~¢ L |isa)
If S = cons(a,s”) then t ~¢ s” e T(I,0).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 33

UNI
FREIBURG

UNI
FREIBURG

@ Case t = empty?(s) but then t does not have type
List(A).

@ Case t = app(sy, S2) With sy ~¢ s; and s, ~¢ s, and
s, s, e T(I.0).
o If s| = empty then { ~¢ app(empty, sp) ~=¢ S2 ~¢ Sb.
o If s{ = cons(a, s{) then
[= app(s1 . 52) ~g app(cons(a, Sf), 52)
~¢ cons(a, app(sy, S2))
By the IH, we have app(s/, s2) ~=¢ s" with s’ € T(I',).

@ Case t = len(s) but then t does not have type List(A).

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 34

Sequences

@ Also know as Array or Vector
@ Parameterized over type of elements
@ Fixed number of elements

@ Direct access to elements (constant time)

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types 35

UNI
FREIBURG

data type
operations

Definition (Signature for Arrays)

Array(A)

UNI
FREIBURG

new : Nat x A — Array(A)

update : Array(A) x Nat x A — Array(A)
get . Array(A) x Nat — A

len . Array(A) — Nat

@ Functional arrays

@ Inimperative languages: update operation changes the

Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

Definition (Identities for Arrays)

identities (i.1) get(new(n, X), /) = X if i < n
(i.2) get(update(a, i, x),i) = x if / < len(a)
(.3) get(update(a,/, X), i) = get(a,i) ifi#j
(i.4) update(update(a, i, Xx),i,y)

= update(a, i, y)
(i.5) update(update(a,j, X), i, y)

— update(update(a, i, y),/, X) if /i £
(i.6) update(new(n, X),i, x) = new(n, x) if i < n

(.7) len(new(n, x)) = n
(.8) len(update(a,/, X)) = len(a)

New: Conditional identities

09.06.2010

Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI

FREIBURG

Calculating with representatives

Suppose the carrier set of Ais {a, b, c}.

.1
@ get(new(10, a), 5) fgz) a

Q get(new(10,a),11) =¢ 14
Q get(update(update(new(10, a),5,b),0, c), 5)

3
S L) get(update(new(10,a), 5, b), 5)(

©Q update(update(new(10,a), 5, b), 5, a)

4 (i.6
Elu} update(new(10, a), 5, a) wé} new(10, a)

Q get(update(new(0,a),1,a),1) ~¢ La
(i.2) Is not applicable because
len(update(new(0, a),1,a)) ~¢ 0.

09.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Abstract data types

UNI
FREIBURG

38

