14 Foundation of Programming Languages and Software Engineering: *Abstract Data Types*

Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg

Abstract data types

- Problem-specific concepts
 - Search trees
 - Lists
 - Queues
 - ...
- Implementations of these concepts may have different characteristics:
 - Memory usage
 - Efficiency
- Implementations should be exchangeable
- Abstract over the concepts, use ADTs!
 - Functional specification
 - Implementation independent
 - Different implementations of a single ADT are possible

ADTs are special signatures

Definition

Let Σ be a signature.

- A Σ -identity is a pair $s \approx t \in T(\Sigma, X) \times T(\Sigma, X)$.
- An ADT is a pair (Σ, \mathcal{E}) where
 - \bullet Σ is a signature,
 - $\mathcal{E} \subseteq T(\Sigma, X) \times T(\Sigma, X)$ is a set of Σ -identities.

Examples

An ADT for natural numbers

$$\Sigma_{nat} = \{ exttt{zero}^{(0)}, exttt{succ}^{(1)} \}$$
 $\mathcal{E}_{nat} = \emptyset$

An ADT for integers

$$\Sigma_{int} = \{ ext{zero}^{(0)}, ext{pred}^{(1)}, ext{succ}^{(1)} \}$$
 $\mathcal{E}_{int} = \{ ext{pred}(ext{succ}(x)) = x,$
 $ext{succ}(ext{pred}(x)) = x \}$

Datatypes are ∑-Algebras

Definition

- A datatype is a Σ -algebra \mathcal{D} .
- A datatype D implements the ADT (Σ, ε) iff every identity s ≈ t ∈ ε is valid in D.
 (Note: We shall refine this definition later.)
- An identity $s \approx t$ is valid in a Σ -algebra $\mathcal{A} = (A, \alpha)$ iff $\hat{\mathcal{J}}(s) = \hat{\mathcal{J}}(t)$ for all variable assignments $\mathcal{J}: X \to A$.

Implementations of the ADT for Naturals

Implementation 1

- $\mathcal{D}nat_1 = (\mathbb{N}, \alpha_1), \alpha_1(\mathtt{zero}) = 0, \alpha_1(\mathtt{succ})(x) = x + 1.$
- No identities, so all are valid.
- The function $\widehat{\alpha}_1$ is bijective.

09.06.2010

Implementations of the ADT for Naturals

Implementation 1

- $\mathcal{D}nat_1 = (\mathbb{N}, \alpha_1), \alpha_1(\mathtt{zero}) = 0, \alpha_1(\mathtt{succ})(x) = x + 1.$
- No identities, so all are valid.
- The function $\widehat{\alpha}_1$ is bijective.

Implementation 2

- $\mathcal{D}nat_2 = (\{0, 1, 2, 3\}, \alpha_2), \alpha_2(zero) = 0,$ $\alpha_2(succ)(x) = (x + 1) \mod 4.$
- No identities, so all are valid.
- The function $\widehat{\alpha}_2$ is not injective (but surjective). $\widehat{\alpha}_2(\text{zero}) = 0 = \widehat{\alpha}_2(\text{succ}(\text{succ}(\text{succ}(\text{succ}(\text{zero})))))$

Implementations of the ADT for Integers (1)

Implementation 1

- $\mathcal{D}int_1 = (\mathbb{Z}, \beta_1), \quad \beta_1(\texttt{zero})() = 0$ $\beta_1(\texttt{succ})(x) = x + 1$ $\beta_1(\texttt{pred})(x) = x 1$
- For arbitrary $\mathcal{J}: \{x\} \to \mathbb{Z}$ we have $\hat{\mathcal{J}}(\operatorname{pred}(\operatorname{succ}(x))) = (\mathcal{J}(x) + 1) 1 = \hat{\mathcal{J}}(x)$ $\hat{\mathcal{J}}(\operatorname{succ}(\operatorname{pred}(x))) = (\mathcal{J}(x) 1) + 1 = \hat{\mathcal{J}}(x)$
- $\widehat{\beta}_1$ is surjective but not injective. Consider $\widehat{\beta}_1(\text{zero}) = 0 = \widehat{\beta}_1(\text{succ}(\text{pred}(\text{zero})))$

09.06.2010

Implementation 2

- $Dint_2 = (\{0, 1, 2, 3\}, \beta_2),$ $\beta_2(zero)() = 0$ $\beta_2(\operatorname{succ})(x) = x + 1 \mod 4$ $\beta_2(\operatorname{pred})(x) = \begin{cases} 3 & \text{if } x = 0, \\ x - 1 & \text{otherwise.} \end{cases}$
- For arbitrary $\mathcal{J}: \{x\} \to \mathbb{Z}$ we have $\hat{\mathcal{J}}(\operatorname{pred}(\operatorname{succ}(X))) = \hat{\mathcal{J}}(X)$ $\hat{\mathcal{J}}(\operatorname{succ}(\operatorname{pred}(X))) = \hat{\mathcal{J}}(X)$
- $\widehat{\beta}_2$ is surjective but not injective.

09.06.2010

Implementations of the ADT for Integers (3)

A Non-implementation

- $\begin{array}{l} \bullet \;\; \mathcal{D}int_3 = (\mathbb{N},\beta_3) \\ \beta_3(\texttt{zero})() &= 0 \\ \beta_3(\texttt{succ})(x) &= x+1 \\ \beta_3(\texttt{pred})(x) &= \begin{cases} x-1 & x>0 \\ 0 & x=0 \end{cases} \end{aligned}$
- Not an implementation:

For
$$\mathcal{J}: X \to \mathbb{N}$$
 with $\mathcal{J}(x) = 0$ we have

$$\hat{\mathcal{J}}(\mathtt{succ}(\mathtt{pred}(\mathit{X}))) = 1 \neq 0 = \hat{\mathcal{J}}(\mathit{X})$$

Fixing the Problems

- Want to rule out implementations such as Dnat2 and Dint2
- Definition of "implementation" is too weak
- Needed: restriction on function $\widehat{\alpha}$
 - $\widehat{\alpha}$ is not necessarily injective (see $\mathcal{D}int_1$)
 - Idea: $\widehat{\alpha}$ must be injective on the equivalence classes induced by the identities of an ADT.

Equivalence Classes

Definition

Suppose R is an equivalence relation on some set M.

- The set $[x]_R := \{y \in M \mid x R y\}$ is called the equivalence class of x.
- $y \in [x]_R$ is called a representative of $[x]_R$.
- The quotient of M with respect to R is the set of equivalence classes induced by R, written M/_R := {[x]_R | x ∈ M}.

Note: For equivalence classes $[x]_R$ and $[y]_R$ we have either $[x]_R = [y]_R$ or $[x]_R \cap [y]_R = \emptyset$.

Congruence Relations

Definition

Suppose Σ is a signature and let R be an equivalence relation on $T(\Sigma, X)$.

• R is a congruence relation iff R is closed under Σ -operations, i.e. s R s' implies $f(t_1, \ldots, s, \ldots, t_n)$ R $f(t_1, \ldots, s', \ldots, t_n)$ for any $n \geq 0$, $f \in \Sigma^{(n)}$, and s, s', $t_1, \ldots, t_n \in T(\Sigma, X)$.

Syntactic Quotient Algebras

UNI FREIBURG

Lemma

Let Σ be a signature and R be a congruence on $T(\Sigma, X)$. For all $n \ge 0$, $f \in \Sigma^{(n)}$, and $t_1, \ldots, t_n \in T(\Sigma, X)$, define α^R as follows:

$$\alpha^{R}(f)([t_{1}]_{R},\ldots,[t_{n}]_{R})=[f(t_{1},\ldots,t_{n})]_{R}$$

Then $(T(\Sigma, X)/_R, \alpha^R)$ is a Σ -algebra.

Proof. We need to show that α^R is well-defined. Suppose $n \geq 0$, $f \in \Sigma^{(n)}$, and $s_1, t_1, \ldots, s_n, t_n \in T(\Sigma, X)$. If $s_1 R t_1, \ldots, s_n R t_n$ then $f(s_1, \ldots, s_n) R f(t_1, \ldots, t_n)$. Hence, $[f(s_1, \ldots, s_n)]_R = [f(t_1, \ldots, t_n)]_R$ because R is a congruence.

Equational Theory

Definition

Let (Σ, \mathcal{E}) be an ADT. We define a relation $\approx_{\mathcal{E}}$ on $T(\Sigma, X)$ as the smallest relation such that

- $\bullet \approx_{\mathcal{E}}$ is a congruence relation;
- $\bullet \approx_{\mathcal{E}}$ contains \mathcal{E} , i.e. $s \approx t \in \mathcal{E}$ implies $s \approx_{\mathcal{E}} t$;
- $\approx_{\mathcal{E}}$ is closed under substitutions, i.e. $s \approx_{\mathcal{E}} t$ implies $\sigma(s) \approx_{\mathcal{E}} \sigma(t)$ for any substitution σ and all $s, t \in T(\Sigma, X)$.

Example

UNI FREIBURG

Congruence classes of $pprox_{\mathcal{E}_{int}}$

```
\Sigma_{int} = \{ 	ext{zero}^{(0)}, 	ext{pred}^{(1)}, 	ext{succ}^{(1)} \}
\mathcal{E}_{int} = \{ 	ext{pred}(	ext{succ}(X)) = X, \\ 	ext{succ}(	ext{pred}(X)) = X \}
[	ext{zero}]_{pprox_{\mathit{int}}} = \{ 	ext{zero}, \\ 	ext{succ}(	ext{pred}(	ext{zero})), \\ 	ext{pred}(	ext{succ}(	ext{zero})), \\ 	ext{succ}(	ext{succ}(	ext{pred}(	ext{zero})))), \dots \}
```

Revised Definition for ADT Implementations

Definition

A datatype $\mathcal{D} = (M, \alpha)$ implements ADT (Σ, \mathcal{E}) with constructors $\Gamma \subseteq \Sigma$ if

- (M, α) is a Σ -algebra
- All identities from E are valid in M
- For all $s, t \in T(\Gamma, \emptyset)$: $s \approx_{\varepsilon} t$ iff $\widehat{\alpha}(s) = \widehat{\alpha}(t)$

Syntactic Implementations of ADTs

FREIBUR

Theorem

Let (Σ, \mathcal{E}) be an ADT with constructors $\Gamma \subseteq \Sigma$. Then $\mathcal{D} = (T(\Sigma, \emptyset)/_{\approx_{\mathcal{E}}}, \alpha^{\approx_{\mathcal{E}}})$ is an implementation of (Σ, \mathcal{E}) .

Proof. \mathcal{D} is a Σ -algebra because $\approx_{\mathcal{E}}$ is a congruence. An easy term induction shows that

$$\widehat{\alpha}^{\approx \varepsilon}(t) = [t]_{\approx \varepsilon} \tag{1}$$

holds for all $t \in T(\Sigma, \emptyset)$. By using (1), we show for all $s, t \in T(\Gamma, \emptyset)$ that $s \approx_{\varepsilon} t$ iff $\widehat{\alpha}^{\approx_{\varepsilon}}(s) = \widehat{\alpha}^{\approx_{\varepsilon}}(t)$.

Proof (cont.)

We still need to establish the validity of the identities in \mathcal{E} . Suppose $\hat{\mathcal{J}}$ is an interpretation function. We define a substitution σ as follows:

$$\sigma(x) = \begin{cases} x & \text{if } x \text{ does not appear in } s \text{ or } t, \\ t & \text{otherwise, where } \mathcal{J}(x) = [t]_{\approx_{\mathcal{E}}} \end{cases}$$

By term induction, we then show for all $r \in T(\Sigma, X)$

$$\widehat{\mathcal{J}}(r) = \widehat{\alpha}^{\approx \varepsilon}(\sigma(r)) \tag{2}$$

From $s \approx t \in \mathcal{E}$, we get $s \approx_{\mathcal{E}} t$, so $\sigma(s) \approx_{\mathcal{E}} \sigma(t)$ holds. We finish to proof by calculating

$$\hat{\mathcal{J}}(s) \stackrel{(2)}{=} \widehat{\alpha}^{\approx_{\mathcal{E}}}(\sigma(s)) \stackrel{(1)}{=} [\sigma(s)]_{\approx_{\mathcal{E}}} = [\sigma(t)]_{\approx_{\mathcal{E}}} \stackrel{(1)}{=} \widehat{\alpha}^{\approx_{\mathcal{E}}}(\sigma(t)) \stackrel{(2)}{=} \widehat{\mathcal{J}}(t)$$

Example

UNI FREIBURG

Nat as a constructor-based ADT (CADT)

CADT: $\Sigma = \{z, s\}, \mathcal{E} = \{\}, \Gamma = \Sigma$ Implementation: (\mathbb{N}, α_1) with $\alpha_1(z)() = 0$ and $\alpha_1(s)(x) = x + 1$

- (\mathbb{N}, α_1) is Σ -algebra
- No identities to check
- Since $\mathcal{E} = \emptyset$, $\approx_{\mathcal{E}}$ is =. Suppose $s, t \in T(\Gamma, \emptyset)$.
 - If s = t then $\widehat{\alpha}_1(s) = \widehat{\alpha}_1(t)$
 - Suppose $s \neq t$. Then $s = s^n(t)$ with n > 0. Hence, $\widehat{\alpha}_1(s) = \widehat{\alpha}_1(t) + n \neq \widehat{\alpha}_1(t)$.

Example

$\mathcal{D}int_2$ is not an implementation of the natural numbers

CADT: $\Sigma = \{z, s\}, \mathcal{E} = \{\}, \Gamma = \Sigma$ ($\{0, 1, 2, 3\}, \alpha_2$) with $\alpha_2(z)() = 0$, $\alpha_2(s)(x) = (x + 1) \mod 4$ is not an implementation.

- $(\{0,1,2,3\},\alpha_2)$ is Σ -algebra
- No identities to check
- Since $\mathcal{E} = \emptyset$, $\approx_{\mathcal{E}}$ is =. We have $z \neq s^4(z)$ but $\widehat{\alpha}_2(z) = 0 = \widehat{\alpha}_2(s^4(z))$.

Alternative implementation of the natural numbers

CADT: $\Sigma = \{z, s\}, \mathcal{E} = \{\}, \Gamma = \Sigma$

Implementation: $(\{a\}^*, \alpha_3)$ with $\alpha_3(z)() = \epsilon, \alpha_3(s)(w) = aw$

- $(\{a\}^*, \alpha_3)$ is Σ -algebra
- No identities to check
- Since $\mathcal{E} = \emptyset$, $\approx_{\mathcal{E}}$ is =.
 - If s = t then $\widehat{\alpha}_3(s) = \widehat{\alpha}_3(t)$
 - Suppose $s \neq t$. Then $s = s^n(t)$ with n > 0. Hence, $\widehat{\alpha}_3(s) = \widehat{\alpha}_3(t) \underbrace{a \dots a}_{} \neq \widehat{\alpha}_3(t).$

Equivalence Classes for Terms Representing Integers

Suppose
$$\Gamma = \Sigma = \{z, s, p\}, \mathcal{E} = \{s(p(x)) = X, p(s(x)) = X\}$$

Question: What is $T(\Sigma,\emptyset)/_{\approx \varepsilon}$?

Answer: Give a representative for every equivalence class.

Lemma

For every term $t \in T(\Sigma, \emptyset)$, exactly one of the following propositions holds

A There exists n > 0 such that $t \in [s^n(z)]_{\approx_{\varepsilon}}$.

 $\mathsf{B}\ t\in [\mathsf{z}]_{\approx_{\mathcal{E}}}.$

C There exists n > 0 such that $t \in [p^n(z)]_{\approx_{\varepsilon}}$.

Proof

The proof is by term induction over *t*.

- t = z so B holds.
- Induction Step for t = s(t'). By the IH, one of the following holds for t'.
 - A If $t' \approx_{\mathcal{E}} s^{(n)}(z)$ for n > 0then $s(t') \approx_{\mathcal{E}} s(s^{(n)}(z)) = s^{(n+1)}(z)$. Since n + 1 > 0 we have case A.
 - B If $t' \approx_{\mathcal{E}} z$ then $s(t') \approx_{\mathcal{E}} s(z)$. We have case A with n = 1.
 - C If $t' \approx_{\mathcal{E}} p^{(n)}(z)$ for n > 0then $s(t') \approx_{\mathcal{E}} s(p^{(n)}(z))$. If n = 1 then $s(p(z)) \approx_{\mathcal{E}} z$ so case B holds. If n > 1 then $s(p(p^{(n-1)}(z))) \approx_{\mathcal{E}} p^{(n-1)}(z)$, so case C holds.
- Induction step for p(t) analogous.

Equivalence Classes for Terms Representing Integers

Lemma

Suppose n > 0, m > 0. Then we have

- $z \approx_{\mathcal{E}} s^n(z)$,
- $z \approx_{\mathcal{E}} p^n(z)$,
- $s^n(z) \not\approx_{\mathcal{E}} p^m(z)$,
- $s^n(z) \not\approx_{\mathcal{E}} s^m(z)$ provided $n \neq m$, and
- $p^n(z) \not\approx_{\mathcal{E}} p^m(z)$ provided $n \neq m$.

If follows that

$$\{s^n(z)|n>0\}\cup\{z\}\cup\{p^n(z)|n>0\}$$

is a set of representatives for $T(\Sigma, \emptyset)/_{\approx_{\mathcal{E}}}$.

Example

UNI FREIBURG

Integers as a CADT

CADT: $\Gamma = \Sigma = \{z, s, p\}, \mathcal{E} = \{s(p(x)) = X, p(s(x)) = X\}$ Implementation: (\mathbb{Z}, α) with

$$\alpha(z) = 0, \alpha(s)(x) = x + 1, \alpha(p)(x) = x - 1$$

- (\mathbb{Z}, α) is a Σ -algebra
- All identities are valid (as seen before)
- An easy term induction shows for all $t \in T(\Sigma, \emptyset)$ that
 - if $t \approx_{\mathcal{E}} z$ then $\widehat{\alpha}(t) = 0$,
 - if $t \approx_{\mathcal{E}} \mathbf{s}^n(\mathbf{z})$ then $\widehat{\alpha}(t) = n$, and
 - if $t \approx_{\mathcal{E}} p^n(z)$ then $\widehat{\alpha}(t) = -n$.

Hence, if $s \approx_{\mathcal{E}} t$ then $\widehat{\alpha}(s) = \widehat{\alpha}(t)$.

Conversely, if $s \not\approx_{\mathcal{E}} t$ then $\widehat{\alpha}(s) \neq \widehat{\alpha}(t)$ because $\widehat{\alpha}$ maps different representatives to different integers.

09.06.2010

Summary

Slogan

Calculating with ADT = applying term operations + determining set of representatives.

Richer ADTs

Definition (Linear Data Structure)

An ADT is called a linear data structure (LDS) iff there is an implementation with simple lists.

- LDS are aggregates, i.e. one element contains several elements of another sort.
- Types are now parameterized.
 - Examples: List(A), Array(A)
 - A is not a fixed type but rather a type parameter.
 - Compare with Java Generics: List<A>, A[]

Lists

UNI FREIBURG

Definition (Signature for Lists)

- Definition parameterized over A
- Constructors: empty, cons
- Definition uses more than one type: More general notion of signature and arity needed

Lists (cont.)

UNI FREIBURG

Definition (Identities for Lists)

```
identities head(cons(a, l)) = a

tail(cons(a, l)) = l

empty?(empty) = true

empty?(cons(a, l)) = false

app(empty, V) = V

app(cons(a, l), V) = cons(a, app(l, V))

len(empty) = zero

len(cons(a, l)) = succ(len(l))
```

Abstract Data Types Heterogeneous Signatures

Definition

Let S be a set of sorts. A heterogeneous signature Σ is a set of function symbols where each $f \in \Sigma$ is associated with an arity $s \to s'$ where $s \in S^*$ and $s' \in S$.

Examples

- Arity of empty: $\epsilon \rightarrow \text{List}(A)$
- Arity of cons: (A, List(A)) → List(A)

Previous definitions need to be generalized as well:

- An algebra has different carrier sets for every sort.
- Terms must respect the sorts associated with a function symbol to rule out illegal terms such as cons(1,1).
- Generalize congruence relation

Dealing with Partial Operations

- head and tail are partial operations:
 - head(empty) =??
 - tail(empty) =??
- One possible solution: Introduce a distinguished element ⊥_s for every sort s
 - head(empty) = \perp_A
 - $tail(empty) = \bot_{List(A)}$
- All operations are strict in \bot_s , i.e. if one argument is \bot_s the result is $\bot_{s'}$
 - head($\perp_{List(A)}$) = \perp_A
 - $tail(\perp_{List(A)}) = \perp_{List(A)}$
 - empty? $(\perp_{List(A)}) = \perp_{Boolean}$
 - $len(\perp_{List(A)}) = \perp_{Nat}$
 - ...

Search for Representatives

Proposition

Let t be a term of type List(A) without variables. Then one of the following holds:

- $t \approx_{\mathcal{E}} t'$ and $t' \in T(\Gamma, \emptyset)$ where $\Gamma = \{\text{empty}, \text{cons}\}.$
- $t \approx_{\mathcal{E}} \perp_{\mathsf{List}(A)}$

Proof. The proof is by induction on *t*.

- Case $t = \text{empty} \in T(\Gamma, \emptyset)$. Trivial.
- Case t = cons(a, s) with $s \approx_{\mathcal{E}} s'$ and $s' \in T(\Gamma, \emptyset)$. Hence, $cons(a, s) \approx_{\mathcal{E}} cons(a, s') \in T(\Gamma, \emptyset)$.
- Case t = head(s) so t does not have type List(A).
- Case $t = \mathtt{tail}(s)$ with $s \approx_{\mathcal{E}} s'$ and $s' \in T(\Gamma, \emptyset)$. If $s' = \mathtt{empty}$ then $t \approx_{\mathcal{E}} \bot_{\mathtt{List}(A)}$. If $s' = \mathtt{cons}(a, s'')$ then $t \approx_{\mathcal{E}} s'' \in T(\Gamma, \emptyset)$.

Proof (cont.)

JNI

- Case t = empty?(s) but then t does not have type List(A).
- Case $t = \operatorname{app}(s_1, s_2)$ with $s_1 \approx_{\mathcal{E}} s_1'$ and $s_2 \approx_{\mathcal{E}} s_2'$ and $s_1', s_2' \in T(\Gamma, \emptyset)$.
 - If $s_1' = \text{empty then } t \approx_{\mathcal{E}} \text{app}(\text{empty}, s_2) \approx_{\mathcal{E}} s_2 \approx_{\mathcal{E}} s_2'$.
 - If $s_1' = \cos(a, s_1'')$ then $t = \operatorname{app}(s_1, s_2) \approx_{\mathcal{E}} \operatorname{app}(\cos(a, s_1''), s_2)$ $\approx_{\mathcal{E}} \cos(a, \operatorname{app}(s_1'', s_2))$

By the IH, we have $app(s_1'', s_2) \approx_{\mathcal{E}} s'$ with $s' \in T(\Gamma, \emptyset)$.

• Case t = len(s) but then t does not have type List(A).

Another Example

Sequences

- Also know as Array or Vector
- Parameterized over type of elements
- Fixed number of elements
- Direct access to elements (constant time)

Arrays

Definition (Signature for Arrays)

data type Array(A)

operations new : Nat $\times A \rightarrow Array(A)$

update : Array(A) \times Nat \times $A \rightarrow$ Array(A)

get : Array(A) \times Nat $\rightarrow A$

len : Array(A) \rightarrow Nat

- Functional arrays
- In imperative languages: update operation changes the array

Definition (Identities for Arrays)

```
identities (i.1) get(new(n, x), i) = x
                                                      if i < n
          (i.2) get(update(a, i, X), i) = X
                                             \mathsf{if}\ i < \mathtt{len}(a)
          (i.3) get(update(a, j, x), i) = get(a, i) if i \neq j
          (i.4) update(update(a, i, x), i, y)
               = update(a, i, y)
          (i.5) update(update(a, j, X), i, y)
               = update(update(a, i, y), j, x) if i \neq j
          (i.6) update(new(n, x), i, x) = new(n, x) if i < n
          (i.7) len(new(n, x)) = n
          (i.8) len(update(a, i, x)) = len(a)
```

New: Conditional identities

09.06.2010

Examples

UNI FREIBURG

Calculating with representatives

Suppose the carrier set of A is $\{a, b, c\}$.

- get(new(10, a), 5) $\stackrel{\text{(i.1)}}{\approx_{\mathcal{E}}} a$
- ② get(new(10, a), 11) $\approx_{\mathcal{E}} \perp_{\mathcal{A}}$
- get(update(update(new(10, a), 5, b), 0, c), 5) $\approx_{\mathcal{E}}^{\text{(i.3)}} \text{get}(\text{update}(\text{new}(10, a), 5, b), 5) \approx_{\mathcal{E}}^{\text{(i.2)}} b$
- update(update(new(10, a), 5, b), 5, a) $\stackrel{\text{(i.4)}}{\approx_{\mathcal{E}}} \text{update(new(10, a), 5, a)} \stackrel{\text{(i.6)}}{\approx_{\mathcal{E}}} \text{new(10, a)}$
- get(update(new(0, a), 1, a), 1) $\approx_{\mathcal{E}} \perp_{A}$ (i.2) is not applicable because len(update(new(0, a), 1, a)) $\approx_{\mathcal{E}}$ 0.

09.06.2010