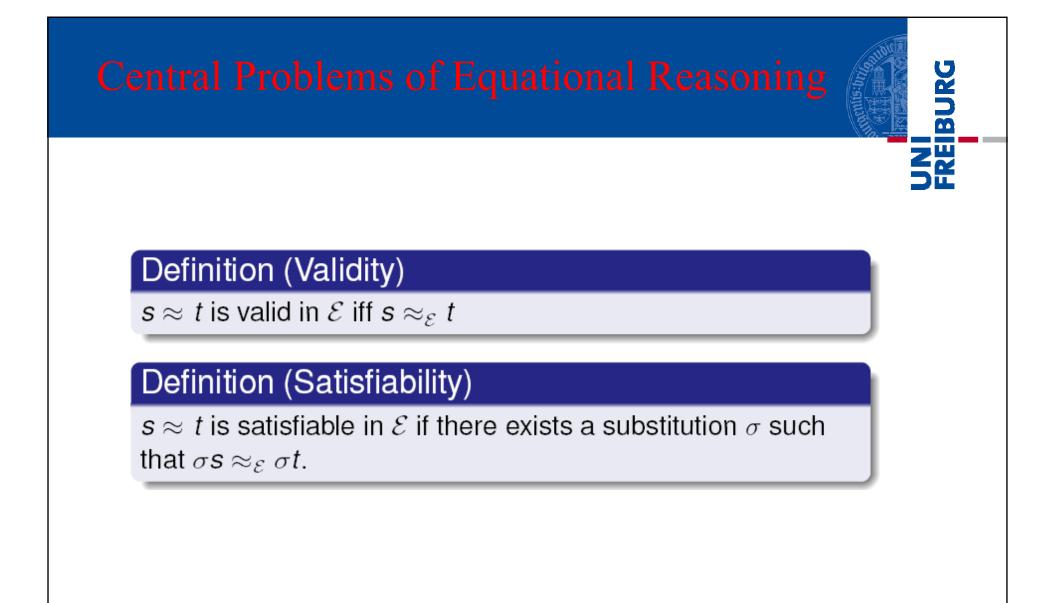
15 Foundation of Programming Languages and Software Engineering: *The Word Problem* 

Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg





### The Word Problem



#### Definition

Suppose  $\Sigma$  is a signature and X a set of variables disjoint from  $\Sigma$ .

- The word problem for  $\mathcal{E}$  is the problem of deciding  $s \approx_{\mathcal{E}} t$  for arbitrary  $s, t \in T(\Sigma, X)$ .
- The ground word problem for *E* is the problem of deciding s ≈<sub>E</sub> t for arbitrary s, t ∈ T(Σ, Ø).

### Solving the Word Problem

#### A Sample Problem

Given 
$$\Sigma_{int} = \{ \text{zero}^{(0)}, \text{pred}^{(1)}, \text{succ}^{(1)} \}$$
 and  
 $\mathcal{E}_{int} = \{ \text{pred}(\text{succ}(X)) = X, \text{succ}(\text{pred}(X)) = X \}$   
we would like to decide whether  
 $\text{succ}(\text{zero}) \approx_{\mathcal{E}_{int}} \text{succ}(\text{succ}(\text{pred}(\text{zero})))$ 

#### A solution

Use identities as reduction rules:

 $\operatorname{pred}(\operatorname{succ}(X)) \to_{\mathcal{E}_{int}} X, \operatorname{succ}(\operatorname{pred}(X)) \to_{\mathcal{E}_{int}} X$ 

- Apply reduction rules to both terms:
  - $\operatorname{succ}(\operatorname{succ}(\operatorname{pred}(\operatorname{zero}))) \to_{\mathcal{E}_{int}} \operatorname{succ}(\operatorname{\underline{zero}})$
- Check whether the resulting terms are identical.

Problem: Applying the reduction rules might not terminate.

**IBUR** 

LE.

### An Undecidable Word Problem

#### **Combinatory Logic**

$$\begin{split} \Sigma_{\mathsf{C}} &= \{S^{(0)}, I^{(0)}, K^{(0)}, \cdot^{(2)}\} \\ \mathcal{E}_{\mathsf{C}} &= \{((S \cdot x) \cdot y) \cdot z = (x \cdot z) \cdot (y \cdot z), \\ (K \cdot x) \cdot y = x, I \cdot x = x\} \\ \text{Look at the following reduction sequence:} \\ &\frac{((S \cdot I) \cdot I) \cdot ((S \cdot I) \cdot I)}{(I \cdot ((S \cdot I) \cdot I))} \\ &\rightarrow_{\mathcal{E}_{\mathsf{C}}} (\underline{I \cdot ((S \cdot I) \cdot I))} \cdot (I \cdot ((S \cdot I) \cdot I)) \\ &\rightarrow_{\mathcal{E}_{\mathsf{C}}} ((S \cdot I) \cdot I) \cdot (\underline{I \cdot ((S \cdot I) \cdot I)}) \\ &\rightarrow_{\mathcal{E}_{\mathsf{C}}} ((S \cdot I) \cdot I) \cdot ((S \cdot I) \cdot I)) \end{split}$$

• /

CC ((-

In general: All computable functions can be encoded as ground terms over  $\Sigma_C \Rightarrow$  the word problem for  $\mathcal{E}_C$  is undecidable.

- /

()

- /

**IBUR** 

## The Reduction Relation Generated by $\sum$ -Identities



Let  $\mathcal{E}$  be a set of  $\Sigma$ -identities. The reduction relation  $\rightarrow_{\mathcal{E}} \subseteq T(\Sigma, X) \times T(\Sigma, X)$  is defined as

 $s \rightarrow_{\mathcal{E}} t$  iff

there exists  $(I, r) \in \mathcal{E}$ ,  $p \in \mathcal{P}os(s)$ , and a substitution  $\sigma$  with  $s|_{p} = \sigma(I)$  and  $t = s[\sigma(r)]_{p}$ .

**IBUR** 

Z



### Computing with Groups

$$\Sigma_G = \{ e^{(0)}, i^{(1)}, f^{(2)} \}$$
  

$$\mathcal{E}_G = \{ f(x, f(y, z)) = f(f(x, y), z),$$
  

$$f(e, x) = x,$$
  

$$f(i(x), x) = e \}$$

$$f(i(e), f(e, e)) \quad \sigma_1 = \{ x \mapsto i(e), y \mapsto e, z \mapsto e \}, 1^{st} \text{ id} \\ \rightarrow_{\mathcal{E}_G} f(f(i(e), e), e) \quad \sigma_2 = \{ x \mapsto e \}, 3^{rd} \text{ id} \\ \rightarrow_{\mathcal{E}_G} f(e, e) \quad \sigma_3 = \{ x \mapsto e \}, 2^{nd} \text{ id} \\ \rightarrow_{\mathcal{E}_G} e$$

UNI FREIBURG

### **Composing Relations**

#### Definition

Given two relations  $R \subseteq A \times B$  and  $S \subseteq B \times C$ , their composition is defined by

 $R \circ S := \{(x, z) \in A \times C \mid \text{there exists some } y \in B \text{ with} \ (x, y) \in R \text{ and } (y, z) \in S\}$ 

#### Example

Suppose  $R = \{FR \rightarrow OG, OG \rightarrow KA, KA \rightarrow MA\}$ . Then  $R \circ R = \{FR \rightarrow KA, OG \rightarrow MA\}$ . IBUR

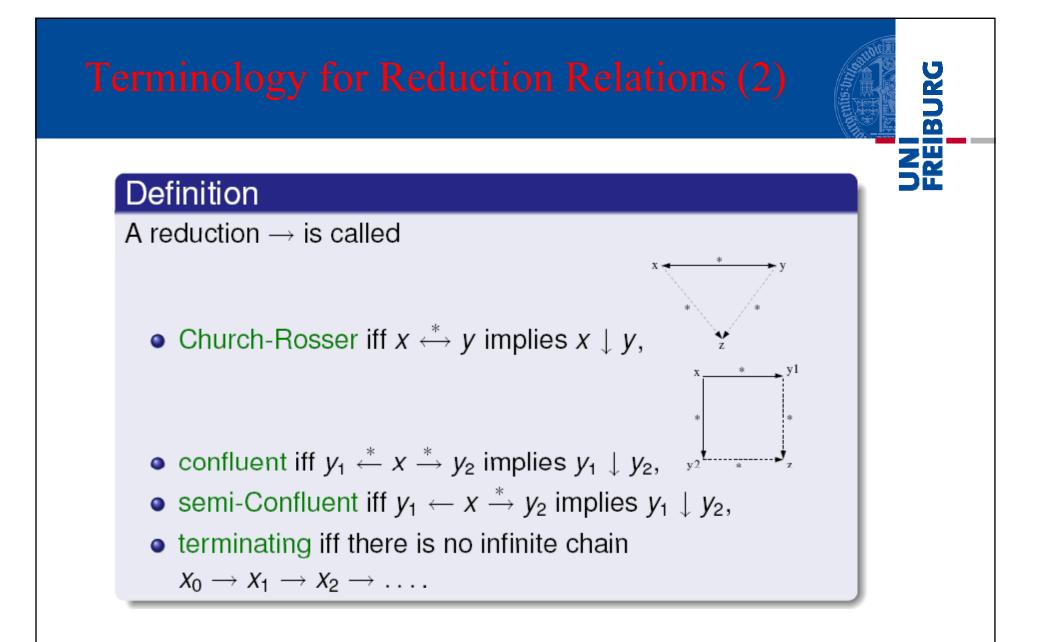
### Notations for Reduction Relations

Suppose  $\rightarrow$  is a binary relation on *M*.

| $\xrightarrow{0} := \{(x, x) \mid x \in M\}$                                        | identity                               |
|-------------------------------------------------------------------------------------|----------------------------------------|
| $\xrightarrow{i+1} := \xrightarrow{i} \circ \rightarrow$                            | $(i + 1)$ -fold composition, $i \ge 0$ |
| $\xrightarrow{+} := \bigcup_{i>0} \xrightarrow{i}$                                  | transitive closure                     |
| $\stackrel{*}{\rightarrow}:=\stackrel{+}{\rightarrow}\cup\stackrel{0}{\rightarrow}$ | reflexive transitive closure           |
| $\stackrel{=}{\rightarrow}:=\rightarrow \cup \stackrel{0}{\rightarrow}$             | reflexive closure                      |
| $\leftarrow := \{(y, x) \mid x \to y\}$                                             | inverse                                |
| $\leftrightarrow:=\leftarrow\cup\rightarrow$                                        | symmetric closure                      |
| $\stackrel{+}{\longleftrightarrow} := (\longleftrightarrow)^+$                      | transitive symmetric closure           |
| $\stackrel{*}{\longleftrightarrow} := (\longleftrightarrow)^*$                      | reflexive transitive symmetric closure |

FREIBURG

# Suppose $\rightarrow$ is a binary relation on *M* and *x*, *y* $\in$ *M*. • x is reducible iff there is a $z \in M$ with $x \to z$ . x is in normal form iff it is not reducible. • y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form. • if x has a unique normal form, it is denoted by $x \downarrow$ . • x and y are joinable iff there is a $z \in M$ such that $x \xrightarrow{*} z \xleftarrow{*} y$ . We then write $x \downarrow y$ .



### Deciding the Word Problem

#### Theorem (Deciding the word problem for $\mathcal{E}$ )

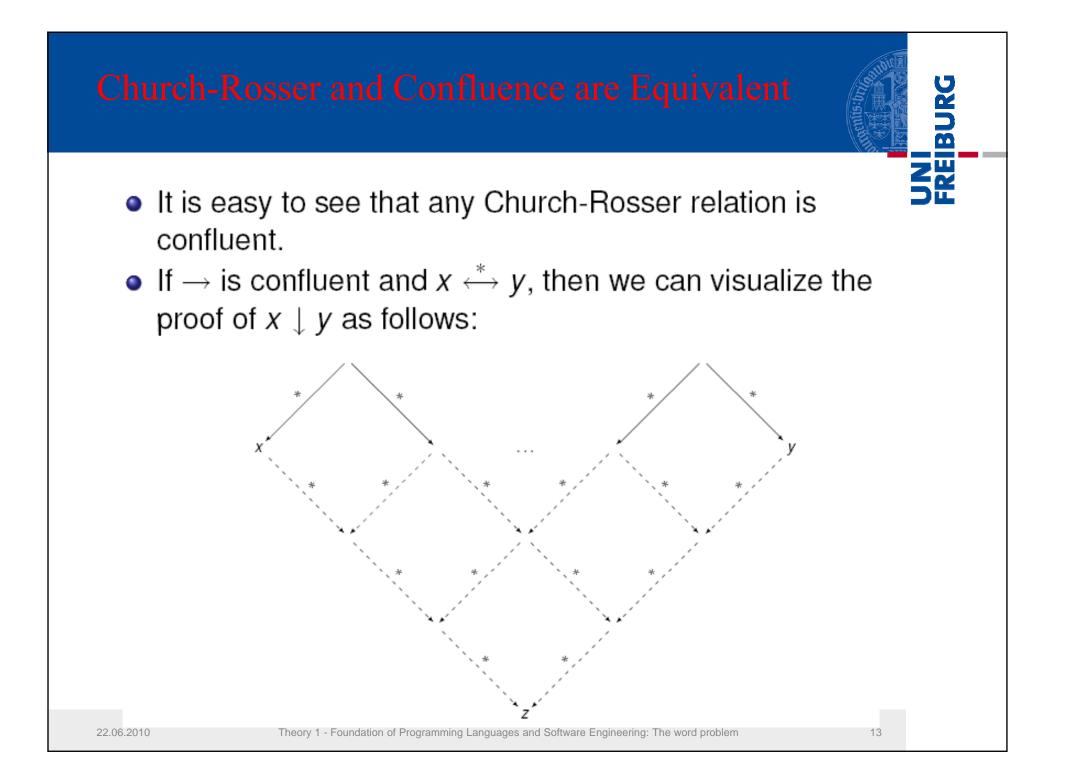
If  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating, then the word problem for  $\mathcal{E}$  is decidable.

Plan: To decide whether s ≈<sub>E</sub> t holds, compare s↓<sub>E</sub> and t↓<sub>E</sub> for syntactic equality.

#### • Caveat:

- $s \downarrow_{\mathcal{E}}$  and  $t \downarrow_{\mathcal{E}}$  must exist
- $s \downarrow_{\mathcal{E}}$  and  $t \downarrow_{\mathcal{E}}$  must be computable
- Before proving the theorem, we need to establish some lemmas and facts.

L H



### Church-Rosser and Confluence are Equivalent

#### Lemma

The following conditions are equivalent:

- $\bigcirc$   $\rightarrow$  has the Church-Rosser property.
- $\bigcirc \rightarrow$  is confluent.
- $\bigcirc$   $\rightarrow$  is semi-confluent.

*Proof.* We show that the implications  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$  hold

- 1 ⇒ 2 If → has the Church-Rosser property and  $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ , then  $y_1 \stackrel{*}{\leftarrow} y_2$ . Hence, by the Church-Rosser property,  $y_1 \downarrow y_2$ , i.e. → is confluent.
- $2 \Rightarrow 3$  Obviously any confluent relation is semi-confluent.

### Proof (cont.)

- 3 ⇒ 1 If → is semi-confluent and  $x \stackrel{*}{\leftrightarrow} y$ , then we show  $x \downarrow y$  by induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .
  - x = y, trivial.
  - If x <sup>\*</sup>→ y' ↔ y, we know x ↓ y' by IH. We show x ↓ y by case distinction:
    - $y' \leftarrow y$ :  $x \downarrow y$  follows directly from  $x \downarrow y'$ .
    - $y' \to y$ : from the IH, we get  $x \xrightarrow{*} z$  and  $z \xleftarrow{*} y'$  for some
      - z. Semi-confluence implies  $z \downarrow y$ , hence  $x \downarrow y$ .

## **iBUR** If → is confluent, every element has at most one normal form. • If $\rightarrow$ is terminating, every element has at least one normal form. • If $\rightarrow$ is confluent and terminating, every element has a unique normal form.

### Another Lemma

#### Lemma

If  $\rightarrow$  is confluent and terminating, then  $x \stackrel{*}{\leftrightarrow} y$  iff  $x \downarrow = y \downarrow$ .

Proof.

"⇐": Trivial.

" $\Rightarrow$ ": Suppose  $x \leftrightarrow y$ .

- Because → is confluent and terminating, x and y have unique normal forms x ↓ and y ↓, respectively.
- Clearly,  $x \downarrow \stackrel{*}{\longleftrightarrow} y \downarrow$ .
- Because → is Church-Rosser, there exists some z such that x ↓<sup>\*</sup>→ z <sup>\*</sup>→ y ↓.
- But  $x \downarrow$  and  $y \downarrow$  are normal forms, so  $x \downarrow = z = y \downarrow$ .

IBUR

### Relating $\leftrightarrow \varepsilon$ and $\approx \varepsilon$ : Auxiliary Lemma

#### Lemma

Suppose  $s, s' \in T(\Sigma, X)$  and  $s \rightarrow_{\mathcal{E}} s'$ .

- Then  $\sigma(s) \to_{\mathcal{E}} \sigma(s')$  for any substitution  $\sigma$  on  $T(\Sigma, X)$ . ( $\to_{\mathcal{E}}$  is closed under substitution)
- **2** Then  $f(t_1, \ldots, s, \ldots, t_n) \rightarrow_{\mathcal{E}} f(t_1, \ldots, s', \ldots, t_n)$  for any  $n \ge 0, f \in \Sigma^{(n)}$ , and  $t_1, \ldots, t_n \in T(\Sigma, X)$ . ( $\rightarrow_{\mathcal{E}}$  is closed under  $\Sigma$ -operations)

**③** Then  $s \approx_{\mathcal{E}} s'$ .

Proof of (1) and (2): Exercise

**iBUR** 

N H

### Proof of (3)

We have  $s \rightarrow_{\mathcal{E}} s'$ . Hence, there exists

- an identity  $(I, r) \in \mathcal{E}$ ,
- a position  $p \in \mathcal{P}os(s)$ , and
- a substitution  $\sigma$

such that  $s|_{p} = \sigma(I)$  and  $s' = s[\sigma(r)]_{p}$ . We have  $\sigma(I) \approx_{\mathcal{E}} \sigma(r)$  because  $\approx_{\mathcal{E}}$  contains  $\mathcal{E}$  and is closed under substitution.

By the following lemma, we finally get  $s \approx_{\mathcal{E}} s'$ .

#### Lemma

Suppose *R* is a congruence relation and  $s, t \in T(\Sigma, X)$ . If  $p \in \mathcal{P}os(s)$  and  $s|_p R t$  then  $s R s[t]_p$ .

Proof. By induction on the length of p.

### Relating $\leftrightarrow \varepsilon$ and $\approx \varepsilon$

#### Lemma

 $\stackrel{*}{\longleftrightarrow}_{\mathcal{E}} \; = \; \approx_{\mathcal{E}}$ 

#### Proof.

- " $\stackrel{*}{\leftrightarrow}_{\mathcal{E}} \subseteq \approx_{\mathcal{E}}$ ". Suppose  $s \stackrel{*}{\leftrightarrow}_{\mathcal{E}} t$ . We show by induction on the length of the chain  $s \stackrel{*}{\leftrightarrow}_{\mathcal{E}} t$  that  $s \approx_{\mathcal{E}} t$ .
  - length = 0, hence s = t.
  - length > 0, hence s ↔ S' ↔ t. By using our auxiliary lemma, we get s' ≈ t. The IH gives use s ≈ s'. Hence, s ≈ t.

IBUR

### Proof (cont.)

- $\bullet \ ``\approx_{\mathcal{E}} \ \subseteq \ \overset{*}{\longleftrightarrow}_{\mathcal{E}}".$ 
  - By definition, <sup>\*</sup>→<sub>E</sub> is an equivalence relation and contains E.
  - By using our auxiliary lemma, we show that →<sub>ε</sub> is closed under substitution and Σ-operations.
     (The proof is, again, by induction on the length of the chain s →<sub>ε</sub> t.)
  - But ≈<sub>E</sub> is defined as the least relation satisfying these properties, so ≈<sub>E</sub> ⊆ <sup>\*</sup>→<sub>E</sub> must hold.

### Deciding the Word Problem

#### Theorem (Deciding the word problem for $\mathcal{E}$ )

If  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating, then the word problem for  $\mathcal{E}$  is decidable.

*Proof.* Suppose  $s, t \in T(\Sigma, X)$ . We must give an algorithm that decides  $s \approx_{\mathcal{E}} t$ . Because  $s \approx_{\mathcal{E}} t$  and  $s \stackrel{*}{\leftrightarrow}_{\mathcal{E}} t$  and  $s \downarrow_{\mathcal{E}} = t \downarrow_{\mathcal{E}}$  are all equivalent, we only need to give an algorithm for computing the normal form  $u \downarrow_{\mathcal{E}}$  for any term u.

### Computing Normal Forms (1)

Suppose  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating. Given a term  $u \in T(\Sigma, X)$ , we can compute the normal form  $u \downarrow_{\mathcal{E}}$  using the following iteration:

- Decide if *u* is already in normal form w.r.t  $\rightarrow_{\mathcal{E}}$ . If yes, stop. Otherwise, continue with step (2).
- ② Find some u' such that  $u \to_{\mathcal{E}} u'$  (if u is not in normal form). Then continue with step (1), setting u = u'.

This iteration terminates because  $\rightarrow_{\mathcal{E}}$  is terminating.

### Computing Normal Forms (2)

Here is how we decide whether *u* is in normal form:

- For all identities  $(I, r) \in \mathcal{E}$  (only finitely many), and
- all positions  $p \in \mathcal{P}os(u)$  (only finitely many)
- check whether there exists a substitution σ such that u|<sub>p</sub> = σ(I). If yes, then we can reduce u to u[σ(r)]<sub>p</sub>. If not, u is already in normal form.

We will see later that finding a substitution  $\sigma$  such that  $u|_{p} = \sigma(I)$  is also decidable.