15 Foundation of Programming Languages

and Software Engineering:
The Word Problem

Summer Term 2010

Robert Elsasser

UNI

FREIBURG

UNI
FREIBURG

Definition (Validity)

s~ tisvalidin £iff s ~¢ t

Definition (Satisfiability)

s ~ tIs satisfiable in £ if there exists a substitution o such
that os ~¢ of.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 2

UNI

Suppose 2 is a sighature and X a set of variables disjoint
from 2.

@ The word problem for £ is the problem of deciding
~¢ tfor arbitrary s, t € T(Xx, X).

@ The ground word problem for £ is the problem of
deciding s ~¢ t for arbitrary s, t € T(¥L,).

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 3

FREIBURG

UNI
FREIBURG

A Sample Problem

Given ¥y = {zero(®, pred"), succ’} and

Eint = {pred(succ(x)) = X, succ(pred(x)) = x}
we would like to decide whether

succ(zero) /¢, succ(succ(pred(zero)))

A solution
@ Use identities as reduction rules:

X, succ(pred(X)) —¢,, X

“int

pred(succ(X)) —¢,.

@ Apply reduction rules to both terms:

o succ(succ(pred(zero))) —¢,, succ(zero)

@ Check whether the resulting terms are identical.

Problem: Applying the reduction rules might not terminate.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 4

UNI
FREIBURG

Combinatory Logic

Yo = {3(0}! 0 KO ,(2)}

fe = ((S-x)-y)-z=(x-2)-(y-2),
(K-x) -y=x,1-x=x}

Look at the following reduction sequence:

((S-H-NH-((S-)-1)
—e (L((S-N)-D)-(I-((S-1)-1))
—e ((S-D-1)-(I-((S-1)-1)
—e ((S-H-1)-((S-1)-1)

) (
) (

In general: All computable functions can be encoded as
ground terms over 2 = the word problem for & is
undecidable.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem

UNI
FREIBURG

Let £ be a set of -identities.
The reduction relation —<C T(X, X) x T(X, X) is defined as

S —¢ Liff
there exists (/,r) € &£, p € Pos(s), and a substitution o with
Slp = o(l) and t = s[o(r)],.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 6

Computing with Groups

= {E(U)‘ (1) f(EJ}

Eg= {f(X, f(yZ)) — f(f(X,y),Z),
fle,x) = x,

fli(x),x) =e}

f(i(e), f(e,e)) oy={x—i(e),y— e.z— e} 1%id
05 = {x — e},37id

e, e) o3 = {x— e}, 2" id

22.06.2010

Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem

UNI

FREIBURG

Giventwo relations R CTA x Band S C B x C, their
composition is defined by

RoS :={(x,z) € Ax C | there exists some y € B with
(x,y) € Rand (y,z) € S}

Suppose R = {FR — OG,0G — KA, KA — MA}.
Then RoR = {FR — KA,OG —+ MA}.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem

UNI
FREIBURG

Suppose — is a binary relation on M.

0 : .
— ={(X,X) | x € M} identity
» . | -
R g (i + 1)-fold composition, / > 0
5= U - transitive closure

i=>0
0 . e
=5 U= reflexive transitive closure

— D .

— = U= reflexive closure
— ={(y.X) | x =y} inverse
— = U — symmetric closure
&= ()t transitive symmetric closure
&= (=) reflexive transitive symmetric closure

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem

UNI

FREIBURG

UNI

Suppose — is a binary relation on M and x, y € M.
@ x isreducible iff thereisaz € M with x — Zz.

@ x isin normal form iff it is not reducible.
@ yis anormal form of x iff x = y and y is in normal form.
@ if x has a unique normal form, it is denoted by x |.

@ x and y are joinable iff there is a z € M such that
X — 7z — y. We then write x | y.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 10

FREIBURG

UNI
FREIBURG

A reduction — is called

@ Church-Rosser iff x «+— y implies x | y, e

@ confluentiff y; < x — y, implies y; | Vo, » SR
@ semi-Confluent iff y; — x = yo implies y; | y»,

@ terminating iff there is no infinite chain
Xo — X4 — Xo —

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 11

Theorem (Deciding the word problem for £)

If £ is finite and —¢ is confluent and terminating, then the
word problem for £ is decidable.

@ Plan: To decide whether s ~¢ t holds, compare s | and
t |« for syntactic equality.

@ Caveat:

@ S|g¢ andt|s must exist
@ 5|¢ and t|s must be computable

@ Before proving the theorem, we need to establish some
lemmas and facts.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 12

UNI

FREIBURG

@ |t is easy to see that any Church-Rosser relation is
confluent.

@ If — is confluent and x <= y, then we can visualize the

proof of x | y as follows:

X ¥
% .-.. ‘-\. ‘«. #
b - “ . &
" B . = -
» * -, kY L4

')
_— ; L F L v ¥ * -
" - . r i -

'H..' l".l'
Z
22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 13

UNI

FREIBURG

Lemma

The following conditions are equivalent:
@ — has the Church-Rosser property.
Q@ — is confluent.

Q@ — is semi-confluent.

Proof. We show that the implications 1 = 2 = 3 = 1 hold

1 = 2 If — has the Church-Rosser property and y; < X — s,
then y; < y». Hence, by the Church-Rosser property,
V1 | Vo, i.e. — is confluent.

2 = 3 Obviously any confluent relation is semi-confluent.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 14

UNI
FREIBURG

UNI

3 = 1 If — is semi-confluent and x <= y, then we show x | y
by induction on the length of the chain x < y.
@ X =y, trivial.

o If x & y' — y,we know x | y’ by IH. We show x | y by
case distinction:

@ y' «— y: x| y follows directly from x | y'.
o y' — y: fromthe IH, we get x == z and z <~ y’ for some
z. Semi-confluence implies z | y, hence x | y.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem s

FREIBURG

UNI
FREIBURG

o If — is confluent, every element has at most one normal
form.

e If — Is terminating, every element has at least one
normal form.

@ If — Is confluent and terminating, every element has a
unigue normal form.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 16

If — is confluent and terminating, then x <= y iff x |= y |.

Proof.
‘<" Trivial.
‘=7 Suppose X — .
e Because — is confluent and terminating, x and y have
unique normal forms x | and y |, respectively.
e Clearly, Xl_é yl.
e Because — is Church-Rosser, there exists some z such
that x |— z < y|.
@ Butx| and y| are normal forms,sox |=z=y|.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 17

UNI

FREIBURG

Lemma

Suppose 5,8 € T(X,X)and s —¢ s
@ Then o(s) —¢ o(s’) for any substitution o on T(X, X).
(—< Is closed under substitution)
Q@ Thenf(t,...,s,....t) —e f(t,.... s, ... Iy forany
n>0,feyX™ andt.... t,e T(X.X).
(—¢ Is closed under X_-operations)
Q@ Thens=~¢ 9.

Proof of (1) and (2): Exercise

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 18

UNI
FREIBURG

UNI
FREIBURG

We have s — §'. Hence, there exists
@ anidentity (/.r) € &,
@ a position p € Pos(s), and
@ a substitution o

such that s|, = o(/) and s’ = s[o(r)],.

We have o (/) ~¢ o(r) because ~ contains £ and is closed
under substitution.

By the following lemma, we finally get s ~- §'.

Suppose R is a congruence relation and s, t € T(x, X). If
p € Pos(s) and s|, R t then s A st],.

Proof. By induction on the length of p.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 19

UNI
FREIBURG

Proof.

@ “Sp C mg.
Suppose s <+, t. We show by induction on the length of
the chain s <, tthat s ~ t.
@ length =0, hence s = 1.
e length > 0, hence s Se s —et. By using our auxiliary
lemma, we get s’ =~¢ t. The |H gives use s ~¢ .
Hence, s ~¢ .

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 20

22.06.2010

#
~e C 7,

e
i

e By definition, < ¢ is an equivalence relation and
contains £.

e By using our auxiliary lemma, we show that Saois
closed under substitution and X_-operations.
(The proof is, again, by induction on the length of the
chain s <—¢ t.)

e But =¢ is defined as the least relation satisfying these
properties, so =g C fil*g must hold.

Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 21

UNI
FREIBURG

UNI

Theorem (Deciding the word problem for £)

If £ Is finite and —¢ Is confluent and terminating, then the
word problem for £ is decidable.

Proof. Suppose s,t e T(X,X). We must give an algorithm

that decides s ~. t. Because s ~+ tand s —. t and
S |- = 1] are all equivalent, we only need to give an
algorithm for computing the normal form v | . for any term wu.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 22

FREIBURG

UNI

Suppose £ is finite and —¢ is confluent and terminating.
Given aterm u € T(X, X), we can compute the normal form

U | - using the following iteration:

@ Decide if uis already in normal form w.r.t — .. If yes,
stop. Otherwise, continue with step (2).

@ Find some v suchthat u —. U/ (if uis notin normal
form). Then continue with step (1), setting u = u'.

This iteration terminates because — is terminating.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 23

FREIBURG

UNI

Here is how we decide whether u is in normal form:

@ For all identities (/, r) € £ (only finitely many), and
@ all positions p € Pos(u) (only finitely many)

@ check whether there exists a substitution o such that
ulp = o(/). If yes, then we can reduce u to ul[o(r)]p. If
not, u is already in normal form.

We will see later that finding a substitution o such that
ul, = o(/) is also decidable.

22.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: The word problem 24

FREIBURG

