16 Foundation of Programming Languages and Software Engineering: *Satisfiability*

6

Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg

Unification

Definition

Unification is the process of solving the satisfiability problem: Given \mathcal{E} and s and t, find a substitution σ such that $\sigma s \approx_{\mathcal{E}} \sigma t$.

- If s and t are ground terms, unification degenerates to the ground word problem.
- The ground word problem is undecidable, and so is the unification problem.

Syntactic Unification

Definition

- Syntactic unification is the unification problem restricted to the empty set of identities (*E* = ∅).
- Given *s* and *t*, find a substitution σ such that $\sigma s = \sigma t$.
- If σs = σt, then σ is called a unifier of s and t or a solution to the equation s =[?] t.
- Syntactic unification is decidable.
- Syntactic unification is theoretically and practically interesting:
 - Symbolic computation algorithms
 - Interpreters for Prolog
 - Type inference

Unifiers

- $\begin{array}{ll} f(x) = \stackrel{?}{=} f(a) & \text{has exactly one unifier: } \{x \mapsto a\} \\ x = \stackrel{?}{=} f(y) & \text{has many unifiers:} \\ \{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots \\ f(x) = \stackrel{?}{=} g(y) & \text{has no unifier} \\ x = \stackrel{?}{=} f(x) & \text{has no unifier} \end{array}$
 - An equation s =? t may have zero, one, or more solutions.
 - Some solutions are more general than others: $\{x \mapsto f(y)\}$ is more general than $\{x \mapsto f(a), y \mapsto a\}$.

IBUR

N H

What is a more general substitution?

Definition

- A substitution σ is more general than a substitution σ' iff there is a substitution δ such that $\sigma' = \delta \sigma$
- We write $\sigma \leq \sigma'$ if σ is more general than σ' .
- If $\sigma \lesssim \sigma'$ then σ' is called an instance of σ .

Example

- Suppose $\sigma = \{x \mapsto f(y)\}$ and $\sigma' = \{x \mapsto f(a), y \mapsto a\}$.
- Define $\delta = \{y \mapsto a\}.$
- Then $\sigma' = \delta \sigma$, hence $\sigma \lesssim \sigma'$.

Lemma

The relation \lesssim is reflexive and transitive.

N N N

Unification Problems

Definition

- A unification problem is a finite set of equations
 S = {s₁ =[?] t₁,..., s_n =[?] t_n}.
- A unifier or solution of S is a substitution σ such that σs_i = σt_i for all i = 1, ..., n.
- $\mathcal{U}(S)$ denotes the set of all unifiers of S.
- S is unifiable if $\mathcal{U}(S) \neq \emptyset$
- A substitution σ is a most general unifier (mgu) of S if σ is a least element of U(S):
 - $\sigma \in \mathcal{U}(S)$ and
 - for all $\sigma' \in \mathcal{U}(S)$: $\sigma \lesssim \sigma'$

Example

• Suppose $S = \{x = y\}$.

- $\sigma := \{x \mapsto y\}$ is an mgu of S:
 - Suppose θ also unifies S. Then

•
$$\theta(x) = \theta(y) = \theta\sigma(x)$$
 and

- $\theta(z) = \theta \sigma(z)$ for any other variable *z* (including *z* = *y*).
- $\sigma' := \{y \mapsto x\}$ is also an mgu of S.
- τ := {x → z, y → z} is a unifier but not an mgu of S
 because τ ≤ σ:

• Consider
$$\delta := \{ z \mapsto y \}.$$

• Then
$$\delta \tau = \{ \mathbf{x} \mapsto \mathbf{y}, \mathbf{z} \mapsto \mathbf{y} \} \neq \sigma.$$

•
$$\sigma'' := \{x \mapsto y, z_1 \mapsto z_2, z_2 \mapsto z_1\}$$
 is an mgu of S:

•
$$\sigma'' \lesssim \sigma$$
 because $\sigma = \{z_1 \mapsto z_2, z_2 \mapsto z_1\}\sigma''$

• If
$$\theta$$
 is a unifier of S then $\sigma \lesssim \theta$, hence $\sigma'' \lesssim \theta$.

B

Idempotent Substitutions

- Our algorithm for finding mgus should not return a solution such as $\sigma'' = \{x \mapsto y, z_1 \mapsto z_2, z_2 \mapsto z_1\}.$
- Note that we have $\sigma'' \sigma'' = \{x \mapsto y\} \neq \sigma''$

Definition

A substitution σ is idempotent iff $\sigma = \sigma \sigma$.

Lemma

A substitution σ is idempotent iff $\mathcal{D}om(\sigma) \cap \mathcal{VR}an(\sigma) = \emptyset$.

(For a substitution $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}, \mathcal{VRan}(\sigma)$ denotes the set of variables occurring in t_1, \ldots, t_n .)

Idempotent mgus

- An mgu is not necessarily idempotent (as seen before).
- But . . .

Theorem

If a unification problem *S* has a solution, then it has an idempotent mgu.

Next step: Develop an algorithm that computes an idempotent mgu for a given unification problem or fails if there is no solution.

B

Solving the Unification Problem

Definition

A unification problem $S = \{x_1 = t_1, \dots, x_n = t_n\}$ is in solved form iff

- the x_i are pairwise distinct variables,
- none of the x_i occurs in any of the t_j .

In this case, we define the substitution \vec{S} as follows:

$$\vec{S} := \{ x_1 \mapsto t_1, \ldots, x_n \mapsto t_n \}$$

- We now show that \vec{S} is an idempotent mgu of S.
- Then we show how to transform a unification problem into solved form, provided the unification problem has a solution.

Solved Forms are mgus (1)

Lemma

If S is in solved form then $\sigma = \sigma \vec{S}$ for all $\sigma \in \mathcal{U}(S)$.

Proof. Let $S = \{x_1 = t_1, \dots, x_n = t_n\}$. We show by case distinction that $\sigma(x) = \sigma \vec{S}(x)$ for all variables x.

• $x \in \{x_1, \ldots, x_n\}$, e.g. $x = x_k$: Then we have $\sigma(x) \stackrel{\sigma \in \mathcal{U}(S)}{=} \sigma(t_k) = \sigma \vec{S}(x)$.

2
$$x \notin \{x_1, \ldots, x_n\}$$
.
Then $\sigma(x) = \sigma \vec{S}(x)$ because $\vec{S}(x) = x$.

Solved Forms are mgus (2)

Lemma

If S is in solved form, then \vec{S} is an idempotent mgu of S.

Proof. Suppose
$$\vec{S} = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$$
.

• \vec{S} is idempotent because none of the x_i appears in any of the t_j .

•
$$\vec{S} \in \mathcal{U}(S)$$
 because $\vec{S}(x_i) = t_i = \vec{S}(t_i)$.

• \vec{S} is an mgu because $\vec{S} \leq \sigma$ for any $\sigma \in \mathcal{U}(S)$.

Transformation into Solved Form

Transformation Rules

- The symbol \oplus denotes disjoint union: $M_1 \oplus M_2 := M_1 \cup M_2$ provided $M_1 \cap M_2 = \emptyset$.
- Applying a substitution to a set of equations S means applying it to both sides of all equations in S.

UNI FREIBURG

Example (1)

Success

$$\{ x = {}^{?} f(a), g(x, x) = {}^{?} g(x, y) \} \implies_{\mathsf{ELIMINATE}}$$

$$\{ x = {}^{?} f(a), g(f(a), f(a)) = {}^{?} g(f(a), y) \} \implies_{\mathsf{DECOMPOSE}}$$

$$\{ x = {}^{?} f(a), f(a) = {}^{?} f(a), f(a) = {}^{?} y \} \implies_{\mathsf{DELETE}}$$

$$\{ x = {}^{?} f(a), f(a) = {}^{?} y \} \implies_{\mathsf{ORIENT}}$$

$$\{ x = {}^{?} f(a), y = {}^{?} f(a) \}$$

Failure

$$\{f(x,x) = {}^{?} f(y,g(y))\} \implies_{\mathsf{Decompose}} \\ \{x = {}^{?} y, x = {}^{?} g(y)\} \implies_{\mathsf{ELIMINATE}} \\ \{x = {}^{?} y, y = {}^{?} g(y)\}$$

- No transformation rule is applicable to $\{x = {}^{?} y, y = {}^{?} g(y)\}.$
- ELIMINATE is not applicable to y = g(y) because the occurs check fails.
- Dropping the occurs check can cause looping:

$$\{y = {}^{?} g(y), \dots y \dots \} \Longrightarrow$$

$$\{y = {}^{?} g(y), \dots g(y) \dots \} \Longrightarrow$$

$$\{y = {}^{?} g(y), \dots g(g(y)) \dots \} \Longrightarrow \dots$$

UN. FREIBURG

Properties of Unify

- Unify is nondeterministic: If more than one transformation rule is applicable, say $S \implies T_1$ and $S \implies T_2$, then Unify may choose arbitrarily between T_1 and T_2 .
- Unify is sound:
 If Unify(S) returns a substitution σ, then σ is an idempotent mgu of S.
- Unify is complete:
 If a unification problem S is solvable then Unify(S) does not fail.
- Unify terminates for all inputs.

Proving Soundness (1)

Lemma

If
$$S \Longrightarrow T$$
 then $\mathcal{U}(S) = \mathcal{U}(T)$.

Proof. Case distinction on the rule used to transform S to T:

- DELETE, DECOMPOSE, or ORIENT: obvious.
- ELIMINATE: $\{x = {}^{?} t\} \uplus S' \Longrightarrow \{x = {}^{?} t\} \cup \theta(S')$ with

$$\theta = \{x \mapsto t\} \text{ and } x \notin \mathcal{V}ar(t).$$

 {x =? t} is in solved form, so σ = σθ if σ(x) = σ(t) by the lemma on page 13.

We now conclude:

$$\sigma \in \mathcal{U}(\{x = {}^{?} t\} \uplus S') \Leftrightarrow \sigma(x) = \sigma(t) \text{ and } \sigma \in \mathcal{U}(S')$$
$$\Leftrightarrow \sigma(x) = \sigma(t) \text{ and } \sigma\theta \in \mathcal{U}(S')$$
$$\Leftrightarrow \sigma(x) = \sigma(t) \text{ and } \sigma \in \mathcal{U}(\theta S')$$
$$\Leftrightarrow \sigma \in \mathcal{U}(\{x = {}^{?} t\} \cup \theta(S'))$$

IBUR

Proving Soundness (2)

Lemma

If *Unify(S)* returns a substitution σ , then σ is an idempotent mgu of *S*.

Proof.

- If Unify(S) returns a substitution σ, then Unify transforms S until it reaches a unification problem T in solved form. We then have σ = T.
- Using the lemma just shown, we get U(S) = U(T).
 (Proving this requires a straightforward induction on the number of transformation steps.)
- By using the lemma on page 14, we get that T
 is an
 idempotent mgu of T and so it is also an idempotent
 mgu of S.

Proving Completeness (1)

Lemma

An equation $f(s_1, \ldots, s_m) = g(t_1, \ldots, t_n)$ where $f \neq g$ has no solution.

Lemma

An equation x = t, where x occurs in t and $x \neq t$, has no solution.

Proof.

- If $x \neq t$ then $t = f(t_1, \ldots, t_n)$ and x occurs in some t_i .
- Hence, $\sigma(x) \neq \sigma(t)$ for any substitution σ because $|\sigma(x)| \leq |\sigma(t_i)| < |\sigma(t)|$.

IBUR

N N N N

Proving Completeness (2)

Lemma

If a unification problem S is solvable then Unify(S) does not fail.

Proof. Unify(S) reduces S to a normal form T with respect to \implies . By the lemma on page 20, T is solvable. Also, T cannot contain equations of the following form:

•
$$f(\ldots) = f(\ldots)$$
 (apply DECOMPOSE)

•
$$f(\ldots) = g(\ldots)$$
 (*T* is solvable)

•
$$x = x^{?} x$$
 (apply DELETE)

• t = x where $t \notin X$ (apply ORIENT)

Hence, all equations of T are of the form $x = {}^{?} t$. Additionally,

• $x \notin Var(t)$ (*T* is solvable)

x cannot occur twice in T (apply ELIMINATE)
 This proves that T is in solved form.

General Strategy for Termination Proofs

To show that a reduction relation (A, \rightarrow) terminates, we need to show that there are no infinite chains $x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \ldots$

Strategy

- Choose another reduction relation (B, >) that is known to terminate.
- Associate every $x \in A$ with a measure $\varphi(x) \in B$.
- Prove that $x \to y$ implies $\varphi(x) > \varphi(y)$.

Now suppose there is an infinite chain in A

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots$$

This implies that there is an infinite chain in B

 $\varphi(X_1) > \varphi(X_2) > \varphi(X_3) > \dots$

But this is a contradiction because > terminates!

Lexicographic Orders (1)

Definition

A strict order on some set A is a transitive and irreflexive relation on A.

Definition

Given two strict orders $(A, >_A)$ and $(B, >_B)$, the lexicographic product $>_{A \times B}$ on $A \times B$ is defined as follows:

 $(x, y) >_{A \times B} (x', y')$ iff $(x >_A x')$ or $(x = x' \text{ and } y >_B y')$

BUR

FRE

Lexicographic Orders (2)

Lemma

The lexicographic product of two strict orders is again a strict order.

Proof. Exercise.

Lemma

The lexicographic product of two terminating relations is again terminating.

Proof. By contradiction.

- Assume $(a_0, b_0) > (a_1, b_1) > (a_2, b_2) > \dots$
- This implies $a_0 \ge a_1 \ge a_2 \ge \ldots$
- Because $>_A$ terminates there must be a $k \in \mathbb{N}$ such that $a_i = a_{i+1}$ for all $i \ge k$.
- This implies $b_k > b_{k+1} > b_{k+2} > \ldots$ but $>_B$ terminates!

Proving Termination of Unify (1)

Lemma

Unify terminates for all inputs.

Proof. We call a variable *x* solved in *S* if *x* occurs exactly once in *S*, namely on the left-hand side of some equation $x = t^{?}$.

We now prove termination of \implies by a measure function that maps a unification problem *S* to a triple (n_1, n_2, n_3) of natural numbers:

- n_1 is the number of variables in S that are not solved.
- n_2 is the size of *S*, defined as $|S| := \sum_{(s=?t)\in S} (|s| + |t|)$
- n_3 is the number of equations of the form $t = {}^{?} x$ in S.

It remains to be shown that each step of \implies decreases the triples with respect to the lexicographic ordering.

$$\begin{array}{ll} (2,9,0) & \{x = \stackrel{?}{} f(a), g(x,x) = \stackrel{?}{} g(x,y)\} \implies_{\mathsf{ELIMINATE}} \\ (1,12,0) & \{x = \stackrel{?}{} f(a), g(f(a), f(a)) = \stackrel{?}{} g(f(a),y)\} \implies_{\mathsf{DECOMPOSE}} \\ (1,10,1) & \{x = \stackrel{?}{} f(a), f(a) = \stackrel{?}{} f(a), f(a) = \stackrel{?}{} y\} \implies_{\mathsf{DELETE}} \\ (1,6,1) & \{x = \stackrel{?}{} f(a), f(a) = \stackrel{?}{} y\} \implies_{\mathsf{ORIENT}} \\ (0,6,0) & \{x = \stackrel{?}{} f(a), y = \stackrel{?}{} f(a)\} \end{array}$$

FREIBURG

Earlier Failure Detection

- Detecting unsolvability can be expensive because Unify first computes a normal form.
- But if the unification problem contains
 - an equation $f(\ldots) = g(\ldots)$ with $f \neq g$ or
 - an equation x = t with $x \in Var(t)$ and $x \neq t$

then failure is immediate.

- Introduce a special unification problem ⊥ which is not in solved form.
- Add two more transformation rules:

CLASH $\{f(\overline{t_n}) = g(\overline{u_n})\} \uplus S \Longrightarrow \bot$ if $f \neq g$ OCCURS-CHECK $\{x = t\} \uplus S \Longrightarrow \bot$ if $x \in \mathcal{V}ar(t)$ and $x \neq t$