16 Foundation of Programming Languages
and Software Engineering:
Satisfiability

Summer Term 2010

Robert Elsasser

UNI

FREIBURG

UNI
FREIBURG

Definition (Validity)

s~ tisvalidin £ iff s ~¢ t

Definition (Satisfiability)

s ~ tis satisfiable in £ if there exists a substitution & such
that os ~¢ of.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 2

UNI

Definition

Unification is the process of solving the satisfiability problem:
Given &£ and s and ¢, find a substitution o such that os ~¢ ot.

@ If sand t are ground terms, unification degenerates to
the ground word problem.

@ The ground word problem is undecidable, and so is the
unification problem.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 3

FREIBURG

UNI
FREIBURG

@ Syntactic unification is the unification problem restricted
to the empty set of identities (£ = ()).

@ Given s and t, find a substitution o such that o0s = ot.

o If os = ot, then o is called a unifier of sand t or a
solution to the equation s =" .

@ Syntactic unification is decidable.

@ Syntactic unification is theoretically and practically
Interesting:

@ Symbolic computation algorithms
e Interpreters for Prolog
e Type inference

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 4

f(x) =’ f(a) has exactly one unifier: {x — a}
x =’ f(y) has many unifiers:
{x — f(y)}, {x— f(a),y — a}, ...
f(x) =" g(y) has no unifier
x =’ f(x) has no unifier

@ An equation s =’ t may have zero, one, or more
solutions.

@ Some solutions are more general than others:
{x — f(y)} is more general than {x — f(a),y — a}.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

UNI

FREIBURG

FREIBU RG

UNI

@ A substitution o is more general than a substitution o' iff
there is a substitution o such that o/ = do

@ We write o < o' if o is more general than o',
@ If o < o' then o' is called an instance of o.

@ Suppose o = {x — f(y)}and o’ = {x — f(a),y — a}.
@ Define 6 = {y — a}.
@ Then o' = do, hence o < o'

29.06.2010

Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

_

The relation < is reflexive and transitive.

@ A unification problem is a finite set of equations

S: {S] :? r‘|:.+++:.Sn :? rn}.
@ A unifier or solution of S is a substitution o such that
osj=octiforalli=1,.. n

@ UU(S) denotes the set of all unifiers of S.
@ Sis unifiable if 4(S) # ()
@ A substitution o is a most general unifier (mgu) of S'if o
s a least element of /(S):
o o € U(S) and
o forallo’ c U(S): 0 < of

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

UNI
FREIBURG

@ Suppose S = {x =’ y}.
@ 0 = {x+— y}isanmgu of S:
@ Suppose # also unifies S. Then
o f(x)=06(y)=>ts(x)and
@ (/(z) = flo(z) for any other variable z (including z = y).

@ o' .= {y — x} is also an mgu of S.
@ 7:={x — z,y — z} is a unifier but notan mgu of S
because 7 £ o
@ Consider d := {z + y}.
@ Thendr ={x+—y,z—y}#o.
@ 0':={x—Yy.zy— 2,2 — 2z} isan mgu of S:
o ¢" < o because o = {z — 25,2 — 21}
@ If A is a unifier of S then = < A, hence 7" < 6.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

UNI

FREIBURG

@ QOur algorithm for finding mgus should not return a
solution such as o” = {x — y, 2y +— 22,20 +— 23 }.

@ Note that we have o"0" = {x +— y} # o”

Definition
A substitution o is idempotent iff o = oo.

A substitution ¢ is idempotent iff Dom(o) N VRan(o) = 0.

(For a substitution o = {x; — &, .. ., Xp +— ln}, VRan(o)
denotes the set of variables occurring in ty,. .., t,.)

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

UNI

FREIBURG

‘=7 Giveno = {x; — 4,..., Xp — by} with x; & t; for all /.

Suppose o is idempotent and Dom(a) N VRan(o) # ().
e Then there exists /,j € {1,..., n} such that x; occurs

in .

o Byjidempotency, o(t) = o(o(x)) = o(x) = .

e Butthen f; = o(x;) = x; which is a contradiction.

e Hence Dom(o) N VRan(o) = 0.

‘<" Suppose Dom(c) N VRan(o) = () and let t be an
arbitrary term. We prove o(t) = oo(t) by term induction.

e t = x. If x € Dom(o), then o(x) does not contain any
variables from Dom(o), so oo (x) = o(x).
If x £ Dom(o), then o(x) = x, hence oo (x) = o(x).

o t =f. Then f = o(f) = oo(f).

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 10

UNI

FREIBURG

@ An mgu is not necessarily idempotent (as seen before).
e But...

If a unification problem S has a solution, then it has an
idempotent mgu.

Next step: Develop an algorithm that computes an
idempotent mgu for a given unification problem or fails if
there is no solution.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 11

UNI

FREIBURG

A unification problem S = {x; =" t;,....x, =" t,}isin

solved form iff

@ the x; are pairwise distinct variables,
@ none of the x; occurs in any of the .

In this case, we define the substitution S as follows:

@ We now show that S is an idempotent mgu of S.

@ Then we show how to transform a unification problem
into solved form, provided the unification problem has a

solution.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

UNI
FREIBURG

If Sis in solved form then o = oS for all o & U(S).

Proof. LetS = {x; ="1t,...,x,="1,}. We show by case

s

distinction that o(x) = ¢ S(x) for all variables x.
Q@ xei{Xy, Xy}, €0 X=X :

Then we have o(x) 2% »(t) = oS(x).

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

13

UNI

FREIBURG

UNI
FREIBURG

If Sis in solved form, then S is an idempotent mgu of S. \

Proof. Suppose S = {Xg — ti,... . Xp+— ly}.

@ Sis idempotent because none of the x; appears in any
of the §;.

@ S e U(S) because S(x;) = t = S(&).
@ Sis an mgu because S < o forany o € U(S).

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 14

FREIBURG

<

Transformation Rules =
DELETE {t="t}wS — S
DECOMPOSE {f(ty) =" f(tn)' WS = {ty =" uy,...tn="up} US
ORIENT [t="x}wS — {x="tluSiftg X
ELIMINATE (x="t}wS = {x ="t} U {x+— t}S)

if x € Var(S)

and x ¢ Var(t) (“occurs check”)

@ The symbol & denotes disjoint union: My w M, := My U M, provided
M1 ﬂ Mg — @

@ Applying a substitution to a set of equations S means applying it to
both sides of all equations in S.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability ils

Success
{x = f(a), g(x, x =" g(x.y)} = ELIMINATE
{x =’ f(a),g(f(a),f(a)) =’ g(f(a).y)! = bpecompost
{x ="f(a),f(a) ="f(a).f(a) ="y} — DELETE
X = f(a), f(a = 12 — ORIENT
{x="fa),y =" f(a)}

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 16

UNI
FREIBURG

UNI

Failure

{f(x, x) = f(y.9(¥))} == Decompose
{x = Y, X =" a(y)} = ELIMINATE
x="y.y="9(y)}

@ No transformation rule is applicable to
{x="y.y="g(y)}

@ ELIMINATE is not applicable to y =’ g(y) because the
occurs check fails.

@ Dropping the occurs check can cause looping:

y="9y)...y...} =
{y="gy)....09(y)...} =
{y="a(y)....9(a())...} = ...

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 17

FREIBURG

UNI
FREIBURG

Unify(S) =while there is some T suchthat S = T do
S =T;
end while

if Sisin solved form then return S else fail

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 18

UNI
FREIBURG

@ Unify i1s nondeterministic:
If more than one transformation rule is applicable, say
S=— TI;and S = 1,, then Unify may choose
arbitrarily between 74 and 7.

@ Unify 1s sound:
It Unify(S) returns a substitution o, then o is an
idempotent mgu of S.

@ Unify i1s complete:
If a unification problem S is solvable then Unify(S) does
not fail.

@ Unify terminates for all inputs.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 19

If S = T then U(S) = U(T).

Proof. Case distinction on the rule used to transform S to T:

@ DELETE, DECOMPOSE, or ORIENT: obvious.
@ ELIMINATE: {x ="t} W S = {x =’ t} UH(S’) with
0 ={x —t} and x & Var(t).
o {x ="t} isin solved form, so o = ofl if o(x) = o(t) by
the lemma on page 13.
@ \We now conclude:
ceU({x ="t}w) & o(x)=c(t)and o € U(S')
< o(x) = o(t)and of € U(S')
< o(x) =o(t)and o € U(AS')

e oclU({x="tugs")

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 20

UNI

FREIBURG

If Unify(S) returns a substitution o, then o is an idempotent
mgu of S.

Proof.

@ If Unify(S) returns a substitution o, then Unify
transforms S until it reaches a unification problem T in
solved form. We then have o = T.

@ Using the lemma just shown, we get U(S) = U(T).
(Proving this requires a straightforward induction on the
number of transformation steps.)

@ By using the lemma on page 14, we get that T is an
iIdempotent mgu of 7 and so it is also an idempotent
mgu of S.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 21

UNI
FREIBURG

An equation f(sy,...,Sn) =" g(t, ..., t,) where f = g has
no solution.

An equation x —’ t, where x occurs in t and x £ 1, has no
solution.

Proof
o lfx#tthent=f(t,...,t;) and x occurs in some t.

@ Hence, o(x) # o(t) for any substitution o because
o ()| < lo(B)] <[o()].

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 22

UNI

FREIBURG

If a unification problem S is solvable then Unify(S) does not
fail.

Proof. Unify(S) reduces S to a normal form T with respect
to =. By the lemma on page 20, T is solvable. Also, T
cannot contain equations of the following form:
o f(...)="f(...) (apply DECOMPOSE)
e f(...)="9g(...) (T issolvable)
@ x="x (apply DELETE)
@ t="xwheret¢ X (apply ORIENT)
Hence, all equations of T are of the form x =’ t. Additionally,
@ x & Var(t) (T issolvable)
@ x cannot occur twicein T (apply ELIMINATE)
This proves that T is in solved form.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 23

UNI
FREIBURG

To show that a reduction relation (A, —) terminates, we need
to show that there are no infinite chains x3 — Xo — X3 —

Strategy

@ Choose another reduction relation (B, >) that is known
to terminate.

@ Associate every x € Awith a measure p(x) € B.
@ Prove that x — y implies ¢(x) > o(y).

Now suppose there is an infinite chain in A
X1 — Xo — Xqg — ...
This implies that there is an infinite chain in B
P(X1) > p(X2) > @(X3) > ...
But this is a contradiction because > terminates!

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 24

UNI

FREIBURG

Definition

A strict order on some set A is a transitive and irreflexive
relation on A.

Definition
Given two strict orders (A, >4) and (B, >g), the lexicographic
product >,.g on A x B is defined as follows:

(X,¥) >axg (X, y)iff (x >4 x)or(x=x"and y >p y)

o

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 25

UNI

FREIBURG

The lexicographic product of two strict orders is again a strict
order.

Proof. Exercise.

The lexicographic product of two terminating relations is
again terminating.

Proof. By contradiction.
@ Assume (&g, by) > (a1, by) > (@, b2) > ...
@ Thisimpliesay > a; > a > ...
@ Because >4 terminates there must be a k € N such that
a = a4 foralli > k.
@ This implies by > by, 1 > by, o > ... but >g terminates!

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 26

UNI

FREIBURG

@ lnefle
@ lnefe

@ Ihere

29.06.2010

UNI
FREIBURG

ation > on N terminates.
ation >y on N x N terminates.

ation >y.ywny ON N x N x N terminates.

Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 27

UNI
FREIBURG

Unify terminates for all inputs. |

Proof. We call a variable x solved in S if x occurs exactly
once in S, namely on the left-hand side of some equation

x="t.
We now prove termination of = by a measure function that
maps a unification problem S to a triple (ny, n,, n3) of natural

numbers:
@ 4 Is the number of variables in S that are not solved.
@ nyis the size of S, defined as S| := ¥ s_1cs(|s| + |])
@ 3 is the number of equations of the form ¢ =’ xin S.

It remains to be shown that each step of = decreases the
triples with respect to the lexicographic ordering.

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 28

M Mo

#(unsolved variables) size of S

N3

#{equations of the form ¢ = x)

UNI
FREIBURG

29.06.2010

DELETE
{t="t}wS=8

DECOMPOSE
[f(h) = f()} S —
{ﬁ :? L y sasq rn :? Un} L S

ORIENT
[t="x}wS—
Ix="tluSiftg X

ELIMINATE
x="t¥S—=

Ix ="t} U{x — t}(S)
if x € Var(S)

and x ¢ Var(t)

Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability

I\
V

I/
V

I/
I

A"

(2?9:'0) {X = f(a),g(x,x)
(1 3 12:0) {X = f(a)~g(f(a):
(1,10,1) {x =7 f(a),f(a) =" f(a),f(a) =" y} = Dewere
(1.6.1) {x="1(a).f(a) ="y)
(0,6,0) {x="f(a).y=""f(a)}

= Q(V)i — ELIMINATE
f(a)) =" g(f(a).y)} = Decomrose

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 30

UNI
FREIBURG

UNI
FREIBURG

@ Detecting unsolvability can be expensive because Unify
first computes a normal form.

@ But if the unification problem contains

o anequation f(...) =" g(...) with f # g or
e an equation x =’ t with x € Var(t) and x # t

then failure is immediate.

@ Introduce a special unification problem L which is not in

solved form.
@ Add two more transformation rules:
CLASH f(t)="g(T,)wS=—= 1L iff#g
OCCURS—CHECK {x="t}¥ S — |

it x € Var(t)
and x £t

29.06.2010 Theory 1 - Foundation of Programming Languages and Software Engineering: Satisfiability 31

