19 Database Foundation: Relational Calculus

Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg

Relational Calculus

Syntax

Formulas (*R-Formulas*) are built out of constants, variables, relation names, junctors \neg , \wedge , \vee , quantors \forall , \exists und auxiliary symbols '(', ')', ','.

- Let R be a relation name of arity k. Let a_1, \ldots, a_k be constants or variables.
 - $R(a_1, \ldots, a_k)$ is an (atomic) R-formula.
- Let selection condition α be given as $X\theta Y$, or $X\theta a$, or $a\theta X$, where X,Y variables, a a constant and $\theta \in \{=, \neq, \leq, <, \geq, >\}$ a comparison operator. α is an (atomic) R-formula.
- Let F be a R-formula.
 - $\neg F$ is a R-Formula.

UNI FREIBURG

Let F be a R-formula containing a variable X, however not containing an expression of the form $\exists X$, resp. $\forall X$. X is called *free* in F and *bound* in F otherwise.

 $\exists X \ F$ is called a $(\exists$ -quantified) R-formula.

 $\forall X \ F$ is called a $(\forall$ -quantified) R-formula.

F is the *scope* of the \exists -, resp. \forall -quantifier.

■ Let F and G be R-formulas and let \mathcal{V}_F , resp. \mathcal{V}_G the set of variables contained in F, resp. G, where variables occurring in $\mathcal{V}_F \cap \mathcal{V}_G$ are free in F and free in G.

The *conjunction* $(F \wedge G)$ is a R-formula.

The disjunction $(F \vee G)$ is a R-formula.

UNI FREIBURG

lacksquare A relational calculus query Q over a database schema ${\mathcal R}$ is given as

$$\{(a_1,\ldots,a_n)\mid F\},\$$

where F a R-formula over \mathcal{R} and a_1, \ldots, a_n variables and constants.

- The set of variables among the a_i equals the set of free variables in F.
- To state a format of the result we can write

$$\{(a_1:A_1,\ldots,a_n:A_n) \mid F\}.$$

Semantic: atomic queries

■ Let the set of variables of F be V_F . A variable assignement ν of F is a function over V_F :

$$\nu: \mathcal{V}_{F} \to dom.$$

- We extend ν by identity for constants; for any constant a there holds $\nu(a) = a$.
- lacktriangle Consider a query over schema $R(A_1,\ldots,A_n)$ given as

$$Q = \{(a_1 \ldots, a_n) \mid R(a_1, \ldots, a_n)\}.$$

Let r be an instance of R and let $F = R(a_1, \ldots, a_n)$. The answer to Q w.r.t. r, Q(r), is defined as:

$$Q(r) = \{(\nu(a_1), \dots, \nu(a_n)) \mid \nu \text{ a variable assignement to } \mathcal{V}_F$$

such that $(\nu(a_1), \dots, \nu(a_n)) \in r\}$

Examples

Examples

Consider schemata R(A, B) and S(B, C) with instances r, s.

$$\blacksquare \pi[A]\sigma[B=5]R \equiv$$

$$\blacksquare \pi[A]R \equiv$$

$$\sigma[A = B]R \equiv$$

$$\blacksquare R \bowtie S \equiv$$

$$\blacksquare R \cup \delta[B \rightarrow A, C \rightarrow B]S \equiv$$

$$\blacksquare \ R - \delta[B \to A, C \to B]S \equiv$$

■ Let
$$T(B)$$
 be a relation scheme and let $t = \pi[B]s$. $R \div T \equiv$

Semantic

■ Let $Q = \{(a_1, ..., a_n) \mid F\}$ be a query, where $a_1, ..., a_n$ variables and constants.

The answer to Q w.r.t. instance \mathcal{I} , $Q(\mathcal{I})$ is as follows:

 $Q(\mathcal{I}) = \{(\nu(a_1), \dots, \nu(a_n)) \mid \nu \text{ a variable assignement } \mathcal{V}_F \text{ such that } F \text{ true under } \nu \text{ w.r.t. } \mathcal{I}\}.$

Example

14.07.2010

Consider schemata R(A, B), S(C, D) with instances r, s. Let $Q = \{(X : A, Y : B, V : C, W : D) \mid R(X, Y) \land S(V, W) \land Y > V\}$ a query.

$$r = \begin{array}{c|cccc} A & B & & & & C & D \\ \hline 1 & 2 & & & s = \begin{array}{c|cccc} C & D & & & \\ \hline 1 & 1 & 1 & & \\ 2 & 2 & 1 & & 1 & 2 \\ & 2 & 1 & & 3 & 1 \end{array} \Longrightarrow$$

Domain independence

- Let $Q := \{(a_1, \ldots, a_n) \mid F\}$. Let \mathcal{I} an instance to \mathcal{R} and adom the set which contains all constants in Q and all constants mentioned in \mathcal{I} . adom is called active domain Q; adom is finite.
- Q, resp. F, are called *domain independent*, if for any set $D \supset adom$ there holds:

$$Q(\mathcal{I}, adom) = Q(\mathcal{I}, D).$$

Example

Example: queries, which are not domain independent

 \blacksquare R(A) a schema, Q a query given as

$$\{X \mid \neg R(X)\},\$$

where
$$\mathcal{I}(R) = \{1\}$$
.

 \blacksquare R(A,B) and S(B,C) schemata. Q a query given as

$$\{(X,Z) \mid \exists Y(R(X,Y) \lor S(Y,Z))\},\$$

where
$$\mathcal{I}(R) = \{(1,1)\}$$
, resp. $\mathcal{I}(S) = \emptyset$.

Safety

If R-formula F is safe, then F domain independent.

- \blacksquare F does not contain \forall .
- If $F_1 \vee F_2$ subformulas of F, then F_1 and F_2 have to contain the same free variables.
- A subformula G of F is called *maximally conjunctiv*, if F does not contain a subformula of the form $H \wedge G$ or $G \wedge H$.

Let $F_1 \wedge \cdots \wedge F_m, m \geq 1$, be a maximally conjunctive subformula of F. All free variables X have to be *bounded* in the following sense $(1 \leq j \leq m)$:

- If X is free in F_j , where F_j neither a comparison nor negated, then X bounded.
- If F_i of the form X = a or a = X and a a constant, then X bounded.
- If F_i of the form X = Y or Y = X and Y bounded, then X bounded.

Examples

- $\{(X,Y) \mid X=Y \vee R(X,Y)\} \text{ is not safe.}$
- $\{(X, Y) | X = Y \land R(X, Y)\}$ is safe.
- $\{(X,Y,Z) \mid R(X,Y,Z) \land \neg(S(X,Y) \lor T(Y,Z))\}$ is not safe, however is safe when written equivalently as

$$R(X,Y,Z) \wedge \neg S(X,Y) \wedge \neg T(Y,Z)$$

■ R-Formula (division!) $\{X \mid \forall Y(S(Y) \Rightarrow R(X,Y))\}$ is equivalent to

$${X \mid \neg \exists Y(S(Y) \land \neg R(X,Y))}$$

Both formulas are not safe, however the equivalent writing

$$\{X \mid \neg \exists Y (S(Y) \land \neg R(X,Y) \land \exists Z \ R(X,Z)) \land \exists U \exists V \ R(U,V) \land X = U\}$$

is safe.