20 Database Foundation: Formal Design

Summer Term 2010

Robert Elsässer

Albert-Ludwigs-Universität Freiburg

Formal Design

- We want to distinguish good from bad database design.
- What kind of additional information do we need?
- Can we transform a bad into a good design?
- By which cost?

Motivation

Relations and anomalies

Stadt

SNr	SName	LCode	LFläche
7	Freiburg	D	357
9	Berlin	D	357
40	Moscow	RU	17075
43	St.Petersburg	RU	17075

Kontinent

<u>KName</u>	<u>LCode</u>	KFläche	Prozent
Europe	D	3234	100
Europe	RU	3234	20
Asia	RU	44400	80

Having removed anomalies

Stadt'			
SNr	SName	LCode	
7	Freiburg	D	
9	Berlin	D	
40	Moscow	RU	
43	St.Petersburg	RU	

Land'		
LCode	LFläche	
D	357	
RU	17075	

	Lage	
<u>LCode</u>	<u>KName</u>	Prozent
D	Europe	100
RU	Europe	20
RU	Asia	80

Lage

Ronomono		
<u>KName</u>	KFläche	
Europe	3234	
Asia	44400	

Kontinent,

Functional Dependencies

- Let a relation schema be given by its format V and let $X, Y \subseteq V$.
- Let $r \in \text{Rel}(V)$. r fulfills a functional dependency (FD) $X \to Y$, if for all $\mu, \nu \in r$:

$$\mu[X] = \nu[X] \Rightarrow \mu[Y] = \nu[Y].$$

■ Let \mathcal{F} a set of functional dependencies over V and $X,Y\subseteq V$. The set of all relations $r\in \text{Rel}(V)$, which fulfill all FD's in \mathcal{F} , is called $\text{Sat}(V,\mathcal{F})$.

Membership-Test

- The FD $X \to Y$, $\mathcal{F} \models X \to Y$ is implied by \mathcal{F} , if for each relation r, whenever $r \in \mathsf{Sat}(V, \mathcal{F})$ then r fulfills $X \to Y$.
- The set $\mathcal{F}^+ = \{X \to Y \mid \mathcal{F} \models X \to Y\}$ is called *closure* of \mathcal{F} .
- $X \to Y \in \mathcal{F}^+$ is called *Membership-Test*.

Key

Let $V = \{A_1, \dots, A_n\}$. $X \subseteq V$ is called *key* of V (bzgl. \mathcal{F}), if

- $X \to A_1 \dots A_n \in \mathcal{F}^+$,
- $Y \subset X \Rightarrow Y \to A_1 \dots A_n \notin \mathcal{F}^+.$

Armstrong-Axioms


```
Let r \in Sat(V, \mathcal{F}).
```

- (A1) Reflexivity: If $Y \subseteq X \subseteq V$, then r fulfills $FA X \to Y$.
- (A2) Augmentation: If $X \to Y \in \mathcal{F}, Z \subseteq V$, then r fulfills FA $XZ \to YZ$.
- (A3) Transitivity: If $X \to Y, Y \to Z \in \mathcal{F}$, then r fulfills FA $X \to Z$.

(A1): trivial FD's.

Correctness and Completeness

- Every FD derivable by the Armstrong axioms is an element of the closure (correctness).
- Every FD in \mathcal{F}^+ is derivable by the Armstrong axioms (completeness)
 - To show completeness: If $X \to Y$ not derivable by (A1)–(A3), then $X \to Y \not\in \mathcal{F}^+$, i.e. $\exists r, r$ fulfills \mathcal{F} , however does not $X \to Y$.

Membership-Test Variant 1:

Starting from $\mathcal F$ apply (A1)–(A3)until $X \to Y$ is derived, or $\mathcal F^+$ is derived and $X \to Y \not\in \mathcal F^+$.

Complexity?

more axioms

Let $r \in Sat(V, \mathcal{F})$. Let $X, Y, Z, W \subseteq V$ und $A \in V$.

- (A4) Union: If $X \to Y, X \to Z \in \mathcal{F}$, r fulfills FD $X \to YZ$.
- (A5) Pseudotransitivity: If $X \to Y$, $WY \to Z \in \mathcal{F}$, r fulfills FD $XW \to Z$.
- (A6) Decomposition: If $X \to Y \in \mathcal{F}, Z \subseteq Y$, r fulfills FD $X \to Z$.
- (A7) Reflexivity: If $X \subseteq V$, r fulfills FD $X \to X$.
- (A8) Accumulation: If $X \to YZ, Z \to AW \in \mathcal{F}$, r fullfills $X \to YZA$.

Axiom systems $\{(A1), (A2), (A3)\}$ and $\{(A6), (A7), (A8)\}$ are equivalent.

Proof!

Membership-Test Variant 2:

• (Attribut-)closure X^+ of X (w.r.t. \mathcal{F}):

$$X^+ = \{A \mid A \in V \text{ and } X \to A \text{ is derivable by } (A1) - (A3)\}.$$

■ First compute X^+ by (A6) - (A8) and afterwards test whether $Y \subseteq X^+$.

XPlus-Algorithm

```
\label{eq:continuous} \begin{split} \operatorname{XPlus}(X,Y,\mathcal{F}) & \operatorname{boolean} \ \{ \\ & \operatorname{result} := X; \\ & \operatorname{WHILE} \ (\operatorname{changes} \ \operatorname{to} \ \operatorname{result}) \ \operatorname{DO} \\ & \operatorname{FOR} \ \operatorname{each} \ X' \to Y' \in \mathcal{F} \ \operatorname{DO} \\ & \operatorname{IF} \ (X' \subseteq \operatorname{result}) \ \operatorname{THEN} \ \operatorname{result} := \operatorname{result} \ \cup \ Y'; \\ & \operatorname{end}. \\ & \operatorname{IF} \ (Y \subseteq \operatorname{result}) \ \operatorname{RETURN} \ \operatorname{true} \ \operatorname{ELSE} \ \operatorname{false}; \\ \} \end{split}
```

Example XPlus-Algorithm

Let
$$V = \{A, B, C, D, E, F, G, H, I\}$$
 and $\mathcal{F} = \{AB \rightarrow E, BE \rightarrow I, E \rightarrow G, GI \rightarrow H\}.$ $AB \rightarrow GH \in \mathcal{F}^+$?

Axiom	Anwendung	result
(A7)	$AB \rightarrow AB$	$\{A,B\}$

Using XPlus-Algorithm we can, given V, \mathcal{F} , compute a key.

How?

Minimal Cover

Equivalence

- \blacksquare Let \mathcal{F},\mathcal{G} sets of FD's.
- lacksquare \mathcal{F}, \mathcal{G} are called *equivalent*, $\mathcal{F} \equiv \mathcal{G}$, if $\mathcal{F}^+ = \mathcal{G}^+$.

Left and right reduction

- \blacksquare A set \mathcal{F} of FD's is called *left-reduced*, if the following condition is fulfilled.
 - If $X \to Y \in \mathcal{F}, Z \subset X$, then $\mathcal{F}' = (\mathcal{F} \setminus \{X \to Y\}) \cup \{Z \to Y\}$ not equivalent \mathcal{F} .
 - *left-reduction:* replace $X \to Y$ in \mathcal{F} by $Z \to Y$.
- It is called *right-reduced*, if $X \to Y \in \mathcal{F}, Z \subset Y$, then $\mathcal{F}' = (\mathcal{F} \setminus \{X \to Y\}) \cup \{X \to Z\}$ not equivalent \mathcal{F} . *right-reduction:* replace $X \to Y$ in \mathcal{F} by $X \to Z$.

looking for possible reductions

- Let $X \to Y$ be a FD in \mathcal{F} and let $Z \to Y$, where $Z \subset X$. We perform a left-reduction, if $XPlus(Z,Y,\mathcal{F})$ is true.
- Let $X \to Y$ a FD in \mathcal{F} and let $X \to Z$, where $Z \subset Y$.

 We perform a right-reduction, if $XPlus(X,Y,\mathcal{F}')$ is true.

Theorem

Let $\mathcal F$ be a set of FD's and $\mathcal F'$ be derived from $\mathcal F$ by left-, resp. right-reduction. $\mathcal F\equiv \mathcal F'.$

Example

- $\mathcal{F}_1 = \{A \to B, B \to A, B \to C, A \to C, C \to A\}$. right-reduction?
- $\mathcal{F}_2 = \{AB \to C, A \to B, B \to A\}.$ left-reduction?

minimal cover

 \mathcal{F}^{min} is a minimal cover of \mathcal{F} , if it is derived from \mathcal{F} by the following steps:

- Perform all possible left-reductions.
- Perform all possible right-reductions.
- Delete all trivial FD's of the form $X \to \emptyset$.
- Compute the union of all FD's $X \to Y_1, \ldots, X \to Y_n$ to derive $X \to Y_1 \ldots Y_n$.

■ A Minimal cover can be computed in polynomial time.

How?

lacksquare \mathcal{F}^{min} is not unique, in general.

Why?

Decomposition

-Lossless

Let $\rho = \{X_1, \dots, X_k\}$ a decomposition of V, \mathcal{F} a set of FD's.

Let $r \in \operatorname{Sat}(V, \mathcal{F})$ and let $r_i = \pi[X_i]r$, $1 \le i \le k$. ρ is called *lossless*, if for any $r \in \operatorname{Sat}(V, \mathcal{F})$ there holds:

$$r = \pi[X_1]r \bowtie \ldots \bowtie \pi[X_k]r$$
.

Example

$$V = \{A, B, C\} \text{ and } \mathcal{F} = \{A \rightarrow B, A \rightarrow C\}$$
.

 $r \in Sat(V, \mathcal{F})$:

$$r = \begin{array}{c|ccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_2 & b_1 & c_2 \end{array}$$

- $\rho_1 = \{AB, BC\} \text{ and } \rho_2 = \{AB, AC\}.$
- \blacksquare r $\pi[AB]r \bowtie \pi[BC]r$,
- \blacksquare r $\pi[AB]r \bowtie \pi[AC]r$.

Theorem

Let a format V and set \mathcal{F} of FD's. Let $\rho=(X_1,X_2)$ be a decomposition of V. ρ is lossless, iff

$$(X_1 \cap X_2) \to (X_1 \setminus X_2) \in \mathcal{F}^+, \text{oder } (X_1 \cap X_2) \to (X_2 \setminus X_1) \in \mathcal{F}^+.$$

Dependency Preserving

Example

$$V = \{A, B, C, D\}, \rho = \{AB, BC\}.$$

- $\mathcal{F} = \{A \to B, B \to C, C \to A\}$. Is ρ dependency preserving w.r.t. \mathcal{F} ?
- Consider $\mathcal{F}' = \{A \to B, B \to C, C \to B, B \to A\}$. Is ρ dependency preserving w.r.t. \mathcal{F}' ?

Definition

- Let $R = (V, \mathcal{F})$ and $Z \subseteq V$.
- lacksquare Define the *projection* of ${\mathcal F}$ on Z

$$\pi[Z]\mathcal{F} = \{X \to Y \in \mathcal{F}^+ \mid XY \subseteq Z\}.$$

■ A decomposition $\rho = \{X_1, \dots, X_k\}$ of V is called *dependency preserving* w.r.t. \mathcal{F} , if

$$\bigcup_{i=1}^k \pi[X_i]\mathcal{F} \equiv \mathcal{F}.$$

There exist lossless decompositions which are not dependency preserving!

- \blacksquare $R = (V, \mathcal{F})$, where $V = \{ \text{Stadt, Adresse, PLZ} \}$,
- $\mathcal{F} = \{ \text{Stadt Adresse} \rightarrow \text{PLZ}, \text{PLZ} \rightarrow \text{Stadt} \}.$
- lacksquare ρ is lossless, as $(X_1 \cap X_2) \to (X_2 \setminus X_1) \in \mathcal{F}$.
- lacksquare ρ is not dependency preserving.

What are the keys!

Normalform

Let $R = (V, \mathcal{F})$. We are looking for a decomposition $\rho = (X_1, \dots, X_k)$ of R with the following properties:

- each $R_i = (X_i, \pi[X_i]\mathcal{F})$, $1 \le i \le k$ is in normalform,
- ullet ρ is lossless and, if possible, dependency preserving.
- *k* minimal.

Terminology

- Let X key of R and $X \subseteq Y \subseteq V$, then Y Superkey of R.
- If $A \in X$ for any key X of R, then A Keyattribute (KA) of R;
- if $A \notin X$ for every key X, then A Non-Keyattribute (NKA).

3rd Normalform

Schema $R = (V, \mathcal{F})$ is in 3rd Normalform (3NF), if for any NKA $A \in V$ there holds:

If $X \to A \in \mathcal{F}$, $A \notin X$, then X Superkey.

Example

UNI FREIBURG

3NF?

Stadt

SNr	SName	LCode	LFläche
7	Freiburg	D	357
9	Berlin	D	357
40	Moscow	RU	17075
43	St.Petersburg	RU	17075

Kontinent

<u>KName</u>	LCode	KFläche	Prozent
Europe	D	3234	100
Europe	RU	3234	20
Asia	RU	44400	80

3NF?

Stadt'

SNr	SName	LCode
7	Freiburg	D
9	Berlin	D
40	Moscow	RU
43	St.Petersburg	RU

Land'

LCode	LFläche
D	357
RU	17075

Lage'

LCode	<u>KName</u>	Prozent
D	Europe	100
RU	Europe	20
RU	Asia	80

Kontinent'

<u>KName</u>	KFläche
Europe	3234
Asia	44400

Boyce-Codd-Normalform

Schema $R = (V, \mathcal{F})$ is in *Boyce-Codd-Normalform* (BCNF), if the following holds. If $X \to A \in \mathcal{F}$, $A \notin X$, then X superkey.

BCNF implies 3NF.

- Consider $R = (V, \mathcal{F})$, where $V = \{ \text{ Stadt, Adresse, PLZ} \}$, and $\mathcal{F} = \{ \text{ Stadt Adresse} \rightarrow \text{PLZ, PLZ} \rightarrow \text{Stadt} \}$.
- R is in 3NF, however not in BCNF.
- Let $\rho = \{\text{Adresse PLZ}, \text{ Stadt PLZ}\}\$ a decomposition, then ρ is in BCNF, lossless and not dependency preserving.

Normalization Algorithm

BCNF-Analysis: lossless and not dependency-preserving

Let $R = (V, \mathcal{F})$ a schema.

Let $X \subset V$, $A \in V$ and $X \to A \in \mathcal{F}$ a FD, which violates BCNF. Let $V' = V \setminus \{A\}$.

Decompose R in

$$R_1 = (V', \pi[V']\mathcal{F}), \quad R_2 = (XA, \pi[XA]\mathcal{F}).$$

2 Test for BCNF w.r.t. R_1 and R_2 and proceed recursively.

3NF-Analysis: lossless and dependencypreserving

Let $R = (V, \mathcal{F})$ a schema and let $\rho = (X_1, \dots, X_k)$ a decomposition of V, such that the Schemata $R_1 = (X_1, \pi[X_1]\mathcal{F}), \dots, R_k = (X_k, \pi[X_k]\mathcal{F})$ in BCNF.

- 1 Let \mathcal{F}^{min} a minimal cover of \mathcal{F} .
- 2 Identify the set $\mathcal{F}' \subseteq \mathcal{F}^{min}$ of those FD's, which are not dependency preserving.
- **3** For any such FA, $X \to A$ extend ρ by XA, resp. schema $(XA, \pi[XA]\mathcal{F})$.