

Greedy Verfahren

Prof. Dr. S. Albers

Greedy Verfahren

- 1. Allgemeine Vorbemerkungen
- 2. Einfache Beispiele
 - Münzwechselproblem
 - Handlungsreisenden-Problem
- 3. Das Aktivitäten Auswahlproblem

Greedy Verfahren zur Lösung eines Optimierungsproblems

Treffe in jedem Verfahrensschritt diejenige Entscheidung, die im Moment am besten ist!

Möglichkeiten:

- 1. Wir erhalten stets die optimale Gesamtlösung.
- Wir erhalten eine Lösung, die zwar nicht immer optimal ist, aber vom Optimum stets nur wenig abweicht.
- 3. Die berechnete Lösung kann beliebig schlecht werden.

WS04/05

Einfache Beispiele: Münzwechsel-Problem

EUR Bargeld-Werte:

500, 200, 100, 50, 20, 10, 5, 2, 1

Beobachtung

Jeder EUR Betrag kann durch Münzen und Banknoten mit diesen Werten bezahlt werden.

Ziel

Bezahlung eines Betrages *n* mit möglichst wenig Münzen und Banknoten

Greedy-Verfahren

Wähle die maximale Zahl von Banknoten und Münzen mit jeweils größtmöglichem Wert, bis der gewünschte Betrag *n* erreicht ist.

Beispiel: n = 487

500 200 100 50 20 10 5 2 1

Werte von Münzen und Banknoten: $n_1, n_2, ..., n_k$

$$n_1 > n_2 > ... > n_k$$
, und $n_k = 1$.

Greedy Zahlungsverfahren:

- **1.** w = n
- **2.** for i = 1 to k do

Münzen mit Wert $m_i = \lfloor w / n_i \rfloor$

$$w = w - m_i \lfloor w / n_i \rfloor$$

Jeder Geldbetrag kann bezahlt werden!

Land Absurdia

Drei Münzen:

$$n_3 = 1$$
, $n_2 > 1$ beliebig, $n_1 = 2 n_2 + 1$

Beispiel: 41, 20, 1

Zu zahlender Betrag: $n = 3 n_2$ (z.B. n = 60)

Optimale Zahlungsweise:

Greedy Zahlungsverfahren:

Gegeben: n Orte und Kosten c(i,j), um von i nach j zu reisen

Gesucht: Eine billigste Rundreise, die alle Orte genau einmal besucht.

Formal: Eine Permutation p von $\{1, 2, ..., n\}$, so dass

 $c(p(1),p(2)) + \cdots + c(p(n-1),p(n)) + c(p(n),p(1))$

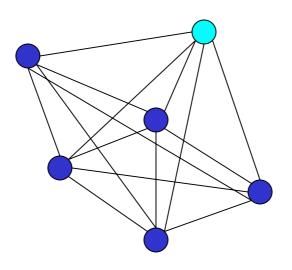
minimal ist.

WS04/05

Handlungsreisenden-Problem (TSP)

Greedy Verfahren zur Lösung von TSP

Beginne mit Ort 1 und gehe jeweils zum nächsten bisher noch nicht besuchten Ort. Wenn alle Orte besucht sind, kehre zum Ausgangsort 1 zurück.



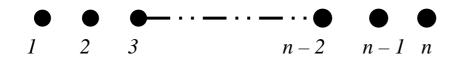
Handlungsreisenden-Problem (TSP)

Beispiel

$$c(i,i+1) = 1$$
, für $i = 1, ..., n-1$
 $c(n,1) = M$ (für eine sehr große Zahl M)
 $c(i,j) = 2$, sonst

Optimale Tour:

Vom Greedy Verfahren berechnete Tour:



Das Aktivitäten-Auswahl-Problem

Gegeben:

 $S = \{a_1, ..., a_n\}$, Menge von n Aktivitäten, die alle eine Ressource benötigen, z.B. einen Hörsaal.

Aktivität a_i : Beginn b_i und Ende e_i

Aktivitäten a_i und a_j heißen kompatibel, falls

$$[b_i, e_i) \cap [b_i, e_i) = \emptyset$$

Gesucht:

Eine größt mögliche Menge paarweise kompatibler Aktivitäten.

Annahme:

Aktivitäten sind nach aufsteigender Zeit des Endes sortiert:

$$e_1 \le e_2 \le e_3 \le \dots \le e_n$$

Greedy Strategie zur Lösung des Aktivitäten-Auswahl-Problems:

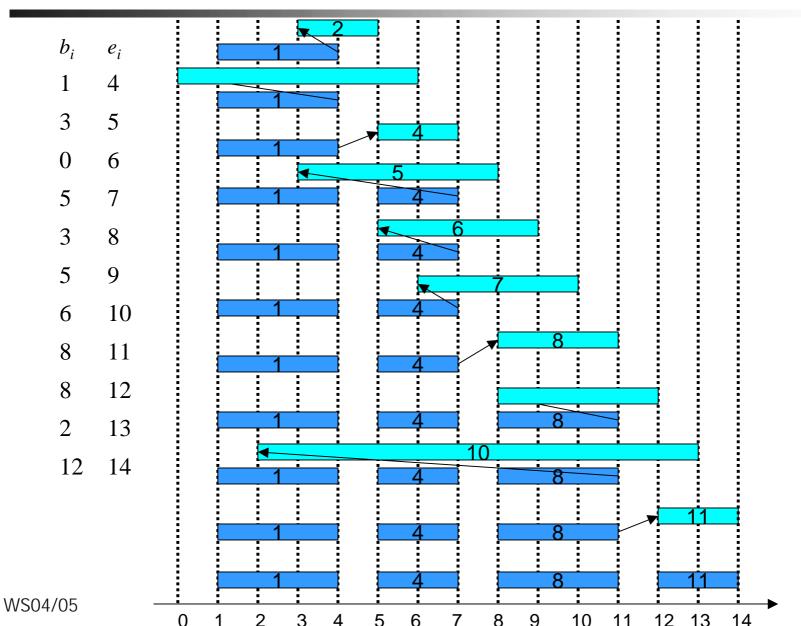
Wähle immer die Aktivität mit frühestem Endzeitpunkt, die legal eingeplant werden kann!

Insbesondere ist die erste gewählte Aktivität die mit frühestem Endzeitpunkt.

Satz

Das Greedy Verfahren zur Auswahl der Aktivitäten liefert eine optimale Lösung des Aktivitäten Auswahl Problems.

Das Aktivitäten Auswahl Problem



Aktivitäten Auswahl


```
Algorithmus Greedy-Aktivitäten
        n Aktivitätenintervalle [b_i, e_i), 1 \le i \le n mit e_i \le e_{i+1};
Output: Eine maximal große Menge von paarweise kompatiblen
          Aktivitäten;
1 A_1 = \{a_1\}
2 last = 1
3 for i = 2 to n do
          /* last ist die zuletzt zu A_{i-1} hinzugefügte Aktivität */
   if b_i < e_{last}
5 then A_i = A_{i-1}
  else /* b_i \ge e_{last}*/
  A_i = A_{i-1} \cup \{a_i\}
          last = i
9 return A_m
```

Laufzeit: O(n)

Aktivitäten Auswahl

Invarianten:

1. Es gilt:

$$e_{last} = \max \{ e_k \mid a_k \in A_i \}$$

2. Es gibt eine optimale Lösung A* mit

$$A^* \cap \{a_1, ..., a_i\} = A_i$$

Satz

Das Greedy Verfahren zur Auswahl der Aktivitäten liefert eine optimale Lösung des Aktivitäten Auswahl Problems.

Beweis

Wir zeigen: Für alle $1 \le i \le n$ gilt:

Es gibt eine optimale Lösung A* mit

$$A^* \cap \{a_1, ..., a_i\} = A_i$$

i = 1:

Wähle $A^* \subseteq \{a_1,..., a_n\}$, A^* ist optimal, $A^* = \{a_{i_1},..., a_{i_k}\}$

$$A^* = a_{i_1} \qquad a_{i_2} \qquad a_{i_3} \qquad \dots \qquad a_{i_k}$$

$$i - 1 \rightarrow i$$
:

wähle $A^* \subseteq \{a_1,...,a_n\}$, A^* ist optimal mit $A^* \cap \{a_1,...,a_{i-1}\} = A_{i-1}$ betrachte $R = A^* \setminus A_{i-1}$

Beobachtung

R ist eine optimale Lösung für die Menge der Aktivitäten in $\{a_i,...,a_n\}$, die zu den Aktivitäten in A_{i-1} kompatibel sind.

 a_i ist nicht kompatibel zu A_{i-1} a_i ist nicht in R enthalten und auch nicht in A^*

$$A* \cap \{a_1,...,a_i\} = A_{i-1} = A_i$$

Fall 2:
$$b_i \ge e_{last}$$

 a_i ist kompatibel zu A_{i-1}

Es gilt:
$$R \subseteq \{a_i,...,a_n\}$$

$$R = \begin{bmatrix} b_1 \\ a_i \end{bmatrix}$$
 $\begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_1 \end{bmatrix}$

$$B^* = A_{i-1} \cup (R \setminus \{b_1\}) \cup \{a_i\}$$
 ist optimal

$$B^* \cap \{a_1,...,a_i\} = A_{i-1} \cup \{a_i\} = A_i$$

Greedy Verfahren

Greedy-Wahl Eigenschaften:

Wenn man optimale Teillösung hat und man trifft eine lokal optimale Wahl, dann gibt es eine global optimale Lösung, die diese Wahl enthält.

Optimalität von Teillösungen:

Eine Teillösung einer optimalen Lösung ist eine optimale Lösung des Teilproblems.

→ nach jeder lokal optimalen Wahl erhalten wir ein zur Ausgangssituation analoges Problem

WS04/05