Algorithms Theory

01 - Introduction

Prof. Dr. S. Albers

Winter term 07/08

Organization l!r

Lectures: Mon 2:00 —4:00 p.m., HS 00-026, building 101
Thu 2:00 —4.00 p.m., HS 00-036, building 101
every other week, alternating with exercises

Exercises:

Every other week, alternating with Thu lecture
-Mon 4 p.m. -6 p.m., SR 01-018, building 101
-Mon 4 p.m. -6 p.m., SR 02-017, building 052
-Tue 2p.m.-4p.m., SR 03-026, building 051
-Thu 11 a.m. -1 p.m., SR 00-034, building 051
-Thu 4 p.m.-6 p.m., SR 00-034, building 051
-Thu 4 p.m.-6p.m., SR 02-017, building 052

Registration until October 26, 2007, 12 p.m.:

http://www.informatik.uni-freiburg.de/~ipr/
— Teaching — Algorithms Theory

Winter term 07/08 2

Organization nr

Final exam:

Winter term 07/08

March 19, 2007, 10 a.m. - 12 p.m.

Prerequisites:

- 50% of exercises completed

- 1 exercise presented during the exercise sessions

Bonus if final exam is passed:

Upgrade of the final grade by

- 1/3 grade if student has achieved 50% of the points
attainable in the exercises

- 2/3 grade if has student achieved 80% of the points
attainable in the exercises

Literature nr

Th. Ottmann, P. Widmayer:

Algorithmen und Datenstrukturen

4th Edition, Spektrum Akademischer Verlag,
Heidelberg, 2002

Th. Cormen, C. Leiserson, R. Rivest, C. Stein:
Introduction to Algorithms, Second Edition
MIT Press, 2001
Original literature

More specific information will be available on the web site.

Winter term 07/08 4

Algorithms and data structures nr

Design and analysis techniques for algorithms

« Divide and conquer
 Greedy approaches

e Dynamic programming
« Randomization
 Amortized analysis

Winter term 07/08 5

Algorithms and data structures nr

Problems and application areas:

 Geometric algorithms
e Algebraic algorithms
e Graph algorithms

e Data structures

* Internet algorithms

e Optimization methods
e Algorithms on strings

Winter term 07/08 6

Divide and Conquer

Winter term 07/08

The divide-and-conquer paradigm 0||r

e Quicksort
 Formulation and analysis of the paradigm
 Geometric divide-and-conquer

- Closest pair

- Line segment intersection

- Voronoi diagrams

Winter term 07/08 8

Quicksort: Sorting by partitioning

S \Y

S <V \Y S, >V

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin
If #S = 1 then Quick:=S
else { choose pivot element v in S;
partition S into S, with elements <\,
and S, with elements > v
Quick:= | Quick(S))|v | Quick(S,)| }

end;

Winter term 07/08

)

Formulation of the D&C paradigm

Divide-and-conquer method for solving a
problem instance of size n:

n > c: Divide the problem into k subproblems of
sizes n,,...,n, (K> 2).

n <c: Solve the problem directly.

Solve the k subproblems in the same way
(recursively).

Combine the partial solutions to generate a
solution for the original instance.

Winter term 07/08

)

10

Analysis l!r

T(n) : maximum number of steps necessary for solving an
instance of size n

2

a n<c
M= 94 T(ny) +...+T(ng) n > c
\ -+ cost for divide and merge

Special case: k=2,n, =n,=n/2
cost for divide and merge: DM(n)

T(1) =a
T(n) = 2T(n/2) + DM(n)

Winter term 07/08 11

Geometric divide-and-conguer nr

Closest Pair Problem:
Given a set S of n points, find a pair of points with the
smallest distance.

Winter term 07/08 12

Divide-and-conquer method nr

1. Divide: Divide S into two equal sized sets S,und S, .
2. Conquer: d =mindist(S,) d, = mindist(S,)
3. Merge: d,=min{d(p.p,) [P €S, p €S}

return min{d,, d,, d, }

S ®
d ®
. \‘IT/' 9
Ir
Sy S

Winter term 07/08 13

Divide-and-conquer method 0||r

1. Divide: Divide S into two equal sets S, und S, .

2. Conquer: d =mindist(S,) d, = mindist(S,)

3. Merge: d,=min{d(p.p,) [P €S, p €S}
return min{d,, d,, d, }

Computation of d,, :

S °
S, d =min {d,, d, } S,

Winter term 07/08 14

Merge step nr

1. Consider only points within distance d of the bisection line,
in the order of increasing y-coordinates.

2. For each point p consider all points g within y-distance
at most d; there are at most 7 such points.

Winter term 07/08 15

Merge step
RS
s '
o - P, | oPs
° F.)l
S, E S
d d

d=min{d,, d}

Winter term 07/08

)

16

Implementation "r

= [nitially sort the points in S in order of increasing x-coordinates
O(n log n).

= Once the subproblems S, , S, are solved, generate a list of the
points in S in order of increasing y-coordinates (merge sort).

Winter term 07/08 17

Running time (divide-and-conguer) "F

(2T (n/2)+an n>3

T(n) =
a n <3

\

= (Guess the solution by repeated substitution.
= Verify by induction.

Solution: O(n log n)

Winter term 07/08 18

Guess by repeated substitution "ur

2T (n/2) + an n >3
T(n):{a(/) nz3

T(n) =

Winter term 07/08 19

Verify by induction

T(n) <anlogn

n = 2!

1 = 1: ok

i>1
T(2Y) =

Winter term 07/08

T(n) = {

2T'(n/2) + an

a

)

n >3
n <3

20

Line segment intersection l!r

Find all pairs of intersecting line segments.

Winter term 07/08 21

Line segment intersection "r

Find all pairs of intersecting line segments.

A
.................... D |
- |
LBl C ‘ I I R
A A
Do o'D
BO o .B C E(5 O.E
(@) (@)
C.

The representation of the horizontal line segments by their endpoints
allows for a vertical partitioning of all objects.

Winter term 07/08 22

ReportCuts l!r

Input: Set S of vertical line segments and endpoints of
horizontal line segments.

Output: All intersections of vertical line segments with horizontal
line segments, for which at least one endpointisin S.

1. Divide
if [S|>1
then using vertical bisection line L, divide S into equal size
sets S, (to the left of L) and S, (to the right of L)
else S contains no intersections

Winter term 07/08 23

ReportCuts nr

1. Divide:
A A
D P
S Bo . o) B g Eo oE
C
S, S,
2. Conquer:

ReportCuts(S,); ReportCuts(S,)

Winter term 07/08 24

ReportCuts 0||r

3. Merge: ???

Possible intersections of a horizontal line-segment h in S;

Case 1: both endpointsin S;

Winter term 07/08 25

ReportCuts nr

Case 2: only one endpointof hin S;

2 a) right endpointin S;

Winter term 07/08 26

ReportCuts
2 b) leftendpointof hin S,
h
Sl SZ
h
S, S,

Winter term 07/08

)

right endpoint in S,
right endpoint not in S,

27

Procedure: ReportCuts(S) nr

3. Merge:

Return the intersections of vertical line segments in S, with
horizontal line segments in S,, for which the left endpointis in S,
and the right endpoint is neither in S; norin S,.

Proceed analogously for S, .

Winter term 07/08 28

Implementation 0||r

SetS

L(S): y-coordinates of all left endpoints in S, for which the
corresponding right endpoint is not in S.

R(S): y-coordinates of all right endpoints in S, for which the
corresponding left endpoint is not in S.

V(S): y-intervals of all vertical line-segments in S.

Winter term 07/08 29

Base cases "r

S contains only one element s.

Case 1: s =(x,y) is a left endpoint
L(S)={y} R(S) =& V(S§)=

Case 2: s =(x,y) is a right endpoint
LS) =& R(S)={y} V(S)=02

Case 3: s=(X,V,,Y,)Is avertical line-segment
L(S) =& R(S)= V(S)={lyw Y.}

Winter term 07/08 30

Merge step "r

Assume that L(S;), R(S;), V(S;) are known for i = 1,2.
S=5S,US,

L(S) =
R(S) =
V(S) =
L, R: ordered by increasing y-coordinates
linked lists

V. ordered by increasing lower endpoints
linked list

Winter term 07/08 31

Output of the intersections

V(Sy)

L(S,)

Winter term 07/08

)

32

Running time nr

Initially, the input (vertical line segments, left/right endpoints of
horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + an + size of output
T(1) = O(1)

O(n log n + k) K = # intersections

Winter term 07/08 33

Computation of a Voronoi diagram nr

Input: Set of sites.

Output: Partition of the plane into regions, each consisting of the
points closer to one particular site than to any other site.

Winter term 07/08 34

Definition of Voronol diagrams nr

P : Set of sites

H(p | p')={x| X is closerto pthanto p’}

Voronoli region of p:

VR(p)= (JH(p|p)

p'eP\{p}

Winter term 07/08 35

Computation of a Voronoi Diagram "F

Divide: Partition the set of sites into two equal sized sets.
Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the
whole plane.

Merge: Connectthe diagrams by adding new edges.

Winter term 07/08 36

Computation of a Voronoi diagram nr

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.

Winter term 07/08 37

