
Winter term 07/08

Algorithms Theory

01 - Introduction

Prof. Dr. S. Albers

2Winter term 07/08

Organization

Lectures: Mon 2:00 – 4:00 p.m., HS 00-026, building 101
Thu 2:00 – 4.00 p.m., HS 00-036, building 101

every other week, alternating with exercises

Exercises:
Every other week, alternating with Thu lecture
- Mon 4 p.m. - 6 p.m., SR 01-018, building 101
- Mon 4 p.m. - 6 p.m., SR 02-017, building 052
- Tue 2 p.m. - 4 p.m., SR 03-026, building 051
- Thu 11 a.m. - 1 p.m., SR 00-034, building 051
- Thu 4 p.m. - 6 p.m., SR 00-034, building 051
- Thu 4 p.m. - 6 p.m., SR 02-017, building 052

Registration until October 26, 2007, 12 p.m.:
http://www.informatik.uni-freiburg.de/~ipr/
→ Teaching → Algorithms Theory

3Winter term 07/08

Organization

Final exam: March 19, 2007, 10 a.m. - 12 p.m.
Prerequisites:
- 50% of exercises completed
- 1 exercise presented during the exercise sessions

Bonus if final exam is passed:
Upgrade of the final grade by
- 1/3 grade if student has achieved 50% of the points

attainable in the exercises
- 2/3 grade if has student achieved 80% of the points

attainable in the exercises

4Winter term 07/08

Literature

Th. Ottmann, P. Widmayer:
Algorithmen und Datenstrukturen
4th Edition, Spektrum Akademischer Verlag,
Heidelberg, 2002

Th. Cormen, C. Leiserson, R. Rivest, C. Stein:
Introduction to Algorithms, Second Edition
MIT Press, 2001

Original literature

More specific information will be available on the web site.

5Winter term 07/08

Algorithms and data structures

Design and analysis techniques for algorithms

• Divide and conquer
• Greedy approaches
• Dynamic programming
• Randomization
• Amortized analysis

6Winter term 07/08

Algorithms and data structures

Problems and application areas:

• Geometric algorithms
• Algebraic algorithms
• Graph algorithms
• Data structures
• Internet algorithms
• Optimization methods
• Algorithms on strings

Winter term 07/08

Divide and Conquer

8Winter term 07/08

The divide-and-conquer paradigm

• Quicksort
• Formulation and analysis of the paradigm
• Geometric divide-and-conquer

- Closest pair
- Line segment intersection
- Voronoi diagrams

9Winter term 07/08

function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin

if #S = 1 then Quick:=S
else { choose pivot element v in S;

partition S into Sl with elements < v,
and Sr with elements > v
Quick:= }

end;

Quicksort: Sorting by partitioning

S

Sl < v v Sr > v

v

Quick(Sl) v Quick(Sr)

10Winter term 07/08

Formulation of the D&C paradigm

Divide-and-conquer method for solving a
problem instance of size n:

1. Divide

n > c: Divide the problem into k subproblems of
sizes n1,...,nk (k ≥ 2).

n ≤ c: Solve the problem directly.

2. Conquer

Solve the k subproblems in the same way
(recursively).

3. Merge

Combine the partial solutions to generate a
solution for the original instance.

11Winter term 07/08

Analysis

T(n) : maximum number of steps necessary for solving an
instance of size n

T(n) =

Special case: k = 2, n1 = n2 = n/2
cost for divide and merge: DM(n)

T(1) = a

T(n) = 2T(n/2) + DM(n)

12Winter term 07/08

Geometric divide-and-conquer

Closest Pair Problem:
Given a set S of n points, find a pair of points with the
smallest distance.

13Winter term 07/08

Divide-and-conquer method

1. Divide: Divide S into two equal sized sets Sl und Sr .
2. Conquer: dl = mindist(Sl) dr = mindist(Sr)
3. Merge: dlr = min{ d(pl ,pr) | pl ∈ Sl , pr ∈ Sr }

return min{dl , dr , dlr }

Sr
Sl

S dl

dlr

dr

14Winter term 07/08

Divide-and-conquer method

SrSl

S

p d

d = min {dl , dr }

1. Divide: Divide S into two equal sets Sl und Sr .
2. Conquer: dl = mindist(Sl) dr = mindist(Sr)
3. Merge: dlr = min{ d(pl ,pr) | pl ∈ Sl , pr ∈ Sr }

return min{dl , dr , dlr }
Computation of dlr :

15Winter term 07/08

Merge step

1. Consider only points within distance d of the bisection line,
in the order of increasing y-coordinates.

2. For each point p consider all points q within y-distance
at most d; there are at most 7 such points.

16Winter term 07/08

Merge step

d

d

d d

d = min { dl , dr }

p

S

Sl Sr

p1

p3

p4

p2

17Winter term 07/08

Implementation

Initially sort the points in S in order of increasing x-coordinates
O(n log n).

Once the subproblems Sl , Sr are solved, generate a list of the
points in S in order of increasing y-coordinates (merge sort).

18Winter term 07/08

Running time (divide-and-conquer)

Guess the solution by repeated substitution.
Verify by induction.

Solution: O(n log n)

19Winter term 07/08

Guess by repeated substitution

20Winter term 07/08

Verify by induction

21Winter term 07/08

Line segment intersection

Find all pairs of intersecting line segments.

...........

......

22Winter term 07/08

Line segment intersection

Find all pairs of intersecting line segments.

A

B C

D

E

A.

B.

C.

D.

E.

.A
.D

.B .C
.E

The representation of the horizontal line segments by their endpoints
allows for a vertical partitioning of all objects.

23Winter term 07/08

ReportCuts

Input: Set S of vertical line segments and endpoints of
horizontal line segments.

Output: All intersections of vertical line segments with horizontal
line segments, for which at least one endpoint is in S.

1. Divide
if |S| > 1

then using vertical bisection line L, divide S into equal size
sets S1 (to the left of L) and S2 (to the right of L)

else S contains no intersections

24Winter term 07/08

ReportCuts

A

B

C

D

E

A
D

B C
ES

S1 S2

1. Divide:

2. Conquer:

ReportCuts(S1); ReportCuts(S2)

25Winter term 07/08

ReportCuts

3. Merge: ???

Possible intersections of a horizontal line-segment h in S1

Case 1: both endpoints in S1

h

S1 S2

26Winter term 07/08

ReportCuts

Case 2: only one endpoint of h in S1

2 a) right endpoint in S1

h

S1 S2

27Winter term 07/08

ReportCuts

2 b) left endpoint of h in S1

h

S1

right endpoint in S2

h

right endpoint not in S2

S2

S1 S2

28Winter term 07/08

Procedure: ReportCuts(S)

3. Merge:
Return the intersections of vertical line segments in S2 with
horizontal line segments in S1, for which the left endpoint is in S1
and the right endpoint is neither in S1 nor in S2 .
Proceed analogously for S1 .

S1 S2

29Winter term 07/08

Implementation

Set S

L(S): y-coordinates of all left endpoints in S, for which the
corresponding right endpoint is not in S.

R(S): y-coordinates of all right endpoints in S, for which the
corresponding left endpoint is not in S.

V(S): y-intervals of all vertical line-segments in S.

30Winter term 07/08

Base cases

S contains only one element s.

Case 1: s = (x,y) is a left endpoint
L(S) = {y} R(S) = ∅ V(S) = ∅

Case 2: s = (x,y) is a right endpoint
L(S) = ∅ R(S) = {y} V(S) = ∅

Case 3: s = (x, y1, y2) is a vertical line-segment
L(S) = ∅ R(S) = ∅ V(S) = { [y1, y2] }

31Winter term 07/08

Merge step

Assume that L(Si), R(Si), V(Si) are known for i = 1,2.
S = S1 ∪ S2

L(S) =

R(S) =

V(S) =

L, R: ordered by increasing y-coordinates
linked lists

V: ordered by increasing lower endpoints
linked list

32Winter term 07/08

Output of the intersections

V(S2)
h3

h2

h1

L(S1)

33Winter term 07/08

Running time

Initially, the input (vertical line segments, left/right endpoints of
horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + an + size of output
T(1) = O(1)

O(n log n + k) k = # intersections

34Winter term 07/08

Computation of a Voronoi diagram

Input: Set of sites.
Output: Partition of the plane into regions, each consisting of the

points closer to one particular site than to any other site.

35Winter term 07/08

Definition of Voronoi diagrams

P : Set of sites

H(p | p’) = {x | x is closer to p than to p’ }

Voronoi region of p:

)'|()(
}\{'

I
pPp

ppHpVR
∈

=

36Winter term 07/08

Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.
Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the
whole plane.

Merge: Connect the diagrams by adding new edges.

37Winter term 07/08

Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.

