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Organization

Lectures: Mon 2:00 – 4:00 p.m.,  HS 00-026, building 101
Thu 2:00 – 4.00 p.m., HS 00-036, building 101

every other week, alternating with exercises

Exercises:
Every other week, alternating with Thu lecture
- Mon 4 p.m. - 6 p.m., SR 01-018, building 101
- Mon 4 p.m. - 6 p.m., SR 02-017, building 052
- Tue    2 p.m. - 4 p.m., SR 03-026, building 051
- Thu 11 a.m. - 1 p.m., SR 00-034, building 051
- Thu 4 p.m. - 6 p.m., SR 00-034, building 051
- Thu 4 p.m. - 6 p.m., SR 02-017, building 052

Registration until October 26, 2007, 12 p.m.:
http://www.informatik.uni-freiburg.de/~ipr/
→ Teaching → Algorithms Theory
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Organization

Final exam: March 19, 2007, 10 a.m. - 12 p.m.
Prerequisites:  
- 50% of exercises completed
- 1 exercise presented during the exercise sessions

Bonus if final exam is passed:
Upgrade of the final grade by
- 1/3 grade if student has achieved 50% of the points 

attainable in the exercises
- 2/3 grade if has student achieved 80% of the points 

attainable in the exercises
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Literature

Th. Ottmann, P. Widmayer:
Algorithmen und Datenstrukturen
4th Edition, Spektrum Akademischer Verlag,
Heidelberg, 2002

Th. Cormen, C. Leiserson, R. Rivest, C. Stein:
Introduction to Algorithms, Second Edition
MIT Press, 2001

Original literature

More specific information will be available on the web site.
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Algorithms and data structures

Design and analysis techniques for algorithms

• Divide and conquer
• Greedy approaches
• Dynamic programming
• Randomization
• Amortized analysis
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Algorithms and data structures

Problems and application areas:

• Geometric algorithms
• Algebraic algorithms
• Graph algorithms
• Data structures
• Internet algorithms
• Optimization methods
• Algorithms on strings
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Divide and Conquer
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The divide-and-conquer paradigm

• Quicksort
• Formulation and analysis of the paradigm
• Geometric divide-and-conquer

- Closest pair
- Line segment intersection
- Voronoi diagrams
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function Quick (S: sequence): sequence;

{returns the sorted sequence S}
begin

if #S = 1 then Quick:=S
else { choose pivot element v in S;

partition S into Sl with elements < v,
and Sr with elements > v
Quick:=                                       }

end;

Quicksort: Sorting by partitioning

S

Sl < v v Sr > v

v

Quick(Sl) v  Quick(Sr)
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Formulation of the D&C paradigm

Divide-and-conquer method for solving a 
problem instance of size n:

1. Divide

n > c: Divide the problem into k subproblems of 
sizes n1,...,nk (k ≥ 2).

n ≤ c: Solve the problem directly.

2. Conquer

Solve the k subproblems in the same way 
(recursively).

3. Merge

Combine the partial solutions to generate a 
solution for the original instance.
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Analysis

T(n) : maximum number of steps necessary for solving an 
instance of size n

T(n) =

Special case: k = 2, n1 = n2 = n/2
cost for divide and merge: DM(n)

T(1) = a

T(n) = 2T(n/2) + DM(n)
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Geometric divide-and-conquer

Closest Pair Problem:
Given a set S of n points, find a pair of points with the
smallest distance.
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Divide-and-conquer method

1. Divide: Divide S into two equal sized sets Sl und Sr .
2. Conquer: dl = mindist(Sl )      dr = mindist(Sr )
3. Merge: dlr = min{ d(pl ,pr ) | pl ∈ Sl , pr ∈ Sr  }

return min{dl , dr , dlr }

Sr
Sl

S dl

dlr

dr
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Divide-and-conquer method

SrSl

S

p d

d = min {dl , dr }

1. Divide: Divide S into two equal sets Sl und Sr .
2. Conquer: dl = mindist(Sl )      dr = mindist(Sr )
3. Merge: dlr = min{ d(pl ,pr ) | pl ∈ Sl , pr ∈ Sr  }

return min{dl , dr , dlr }
Computation of dlr :
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Merge step

1. Consider only points within distance d of the bisection line,
in the order of increasing y-coordinates.

2. For each point p consider all points q within y-distance
at most d; there are at most 7 such points. 
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Merge step

d

d

d d

d = min { dl , dr }

p

S

Sl Sr

p1

p3

p4

p2
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Implementation

Initially sort the points in S in order of increasing x-coordinates
O(n log n).

Once the subproblems Sl , Sr are solved, generate a list of the 
points in S in order of increasing y-coordinates (merge sort).
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Running time (divide-and-conquer)

Guess the solution by repeated substitution.
Verify by induction.

Solution: O(n log n)
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Guess by repeated substitution
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Verify by induction
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Line segment intersection

Find all pairs of intersecting line segments.

...........

......
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Line segment intersection

Find all pairs of intersecting line segments.

A

B C

D

E

A.

B.

C.

D.

E.

.A
.D

.B .C
.E

The representation of the horizontal line segments by their endpoints
allows for a vertical partitioning of all objects.
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ReportCuts

Input: Set S of vertical line segments and endpoints of 
horizontal line segments.

Output: All intersections of vertical line segments with horizontal
line segments, for which at least one endpoint is in S.

1. Divide
if |S| > 1

then using vertical bisection line L, divide S into equal size
sets S1 (to the left of L) and S2 (to the right of L)

else S contains no intersections
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ReportCuts

A

B

C

D

E

A
D

B C
ES

S1 S2

1. Divide:

2. Conquer:

ReportCuts(S1); ReportCuts(S2)
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ReportCuts

3. Merge: ???

Possible intersections of a horizontal line-segment h in S1

Case 1: both endpoints in S1

h

S1 S2
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ReportCuts

Case 2: only one endpoint of h in S1

2 a) right endpoint in S1

h

S1 S2
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ReportCuts

2 b) left endpoint of h in S1

h

S1

right endpoint in S2

h

right endpoint not in S2

S2

S1 S2
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Procedure: ReportCuts(S)

3. Merge:
Return the intersections of vertical line segments in S2 with
horizontal line segments in S1, for which the left endpoint is in S1
and the right endpoint is neither in S1 nor in S2 . 
Proceed analogously for S1 .

S1 S2
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Implementation

Set S

L(S): y-coordinates of all left endpoints in S, for which the 
corresponding right endpoint is not in S.

R(S): y-coordinates of all right endpoints in S, for which the 
corresponding left endpoint is not in S.

V(S): y-intervals of all vertical line-segments in S.
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Base cases

S contains only one element s.

Case 1: s = (x,y) is a left endpoint
L(S) = {y} R(S) = ∅ V(S) = ∅

Case 2: s = (x,y) is a right endpoint
L(S) = ∅ R(S) = {y} V(S) = ∅

Case 3: s = (x, y1, y2) is a vertical line-segment
L(S) = ∅ R(S) = ∅ V(S) = { [y1, y2] }
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Merge step

Assume that L(Si ), R(Si ), V(Si ) are known for i = 1,2.
S = S1 ∪ S2

L(S) = 

R(S) =

V(S) =

L, R: ordered by increasing y-coordinates
linked lists

V: ordered by increasing lower endpoints
linked list
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Output of the intersections

V(S2)
h3

h2

h1

L(S1)
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Running time

Initially, the input (vertical line segments, left/right endpoints of 
horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

T(n) = 2T(n/2) + an + size of output
T(1) = O(1)

O(n log n + k) k = # intersections
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Computation of a Voronoi diagram

Input: Set of sites.
Output: Partition of the plane into regions, each consisting of the   

points closer to one particular site than to any other site.
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Definition of Voronoi diagrams

P : Set of sites

H(p | p’ ) = {x | x is closer to p than to p’ }

Voronoi region of p:

)'|()(
}\{'

I
pPp

ppHpVR
∈

=
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Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.
Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the
whole plane.

Merge: Connect the diagrams by adding new edges.
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Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.


