

Algorithms Theory

01 - Introduction

Prof. Dr. S. Albers

Organization

Lectures: Mon 2:00 – 4:00 p.m., HS 00-026, building 101

Thu 2:00 – 4.00 p.m., HS 00-036, building 101

every other week, alternating with exercises

Exercises:

Every other week, alternating with Thu lecture

- Mon 4 p.m. - 6 p.m., SR 01-018, building 101

- Mon 4 p.m. - 6 p.m., SR 02-017, building 052

- Tue 2 p.m. - 4 p.m., SR 03-026, building 051

- Thu 11 a.m. - 1 p.m., SR 00-034, building 051

- Thu 4 p.m. - 6 p.m., SR 00-034, building 051

- Thu 4 p.m. - 6 p.m., SR 02-017, building 052

Registration until October 26, 2007, 12 p.m.:

http://www.informatik.uni-freiburg.de/~ipr/

→ Teaching → Algorithms Theory

Organization

Final exam: March 19, 2007, 10 a.m. - 12 p.m.

Prerequisites:

- 50% of exercises completed

- 1 exercise presented during the exercise sessions

Bonus if final exam is passed:

Upgrade of the final grade by

- 1/3 grade if student has achieved 50% of the points attainable in the exercises
- 2/3 grade if has student achieved 80% of the points attainable in the exercises

Winter term 07/08

Literature

Th. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen 4th Edition, Spektrum Akademischer Verlag, Heidelberg, 2002

Th. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, Second Edition MIT Press, 2001

Original literature

More specific information will be available on the web site.

Design and analysis techniques for algorithms

- Divide and conquer
- Greedy approaches
- Dynamic programming
- Randomization
- Amortized analysis

Winter term 07/08

Algorithms and data structures

Problems and application areas:

- Geometric algorithms
- Algebraic algorithms
- Graph algorithms
- Data structures
- Internet algorithms
- Optimization methods
- Algorithms on strings

Divide and Conquer

The divide-and-conquer paradigm

- Quicksort
- Formulation and analysis of the paradigm
- Geometric divide-and-conquer
 - Closest pair
 - Line segment intersection
 - Voronoi diagrams

Winter term 07/08

Quicksort: Sorting by partitioning

```
V
                              S_r > v
function Quick (S: sequence): sequence;
{returns the sorted sequence S}
begin
     if #S = 1 then Quick:=S
     else { choose pivot element v in S;
           partition S into S_l with elements < v,
           and S<sub>r</sub> with elements > v
           Quick:= |Quick(S_1)| \vee |Quick(S_r)|
end;
```

Winter term 07/08

Formulation of the D&C paradigm

Divide-and-conquer method for solving a problem instance of size *n*:

1. Divide

n > c: Divide the problem into k subproblems of sizes $n_1, ..., n_k$ ($k \ge 2$).

 $n \le c$: Solve the problem directly.

2. Conquer

Solve the *k* subproblems in the same way (recursively).

3. Merge

Combine the partial solutions to generate a solution for the original instance.

Analysis

T(n): maximum number of steps necessary for solving an instance of size n

$$T(n) = \begin{cases} a & n \le c \\ T(n_1) + \ldots + T(n_k) & n > c \\ + \text{cost for divide and merge} \end{cases}$$

Special case: k = 2, $n_1 = n_2 = n/2$

cost for divide and merge: DM(n)

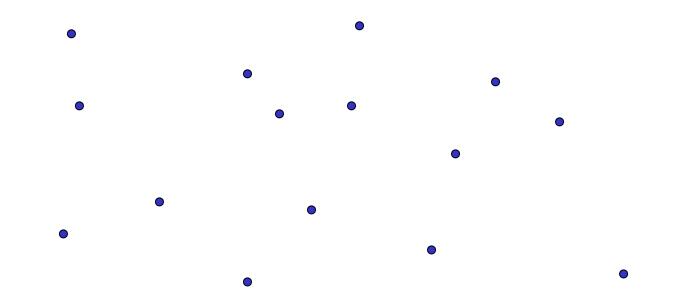
$$T(1) = a$$

$$T(n) = 2T(n/2) + DM(n)$$

Geometric divide-and-conquer

Closest Pair Problem:

Given a set *S* of *n* points, find a pair of points with the smallest distance.



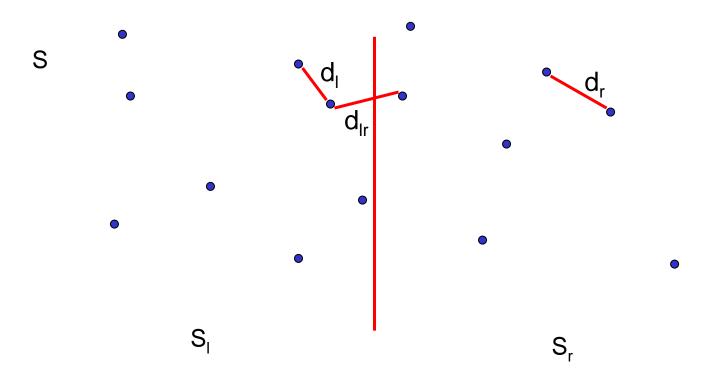
Divide-and-conquer method

1. Divide: Divide S into two equal sized sets S_i und S_r .

2. Conquer: $d_l = mindist(S_l)$ $d_r = mindist(S_r)$

3. Merge: $d_{lr} = \min\{d(p_l, p_r) \mid p_l \in S_l, p_r \in S_r\}$

return min $\{d_l, d_r, d_{lr}\}$



Divide-and-conquer method

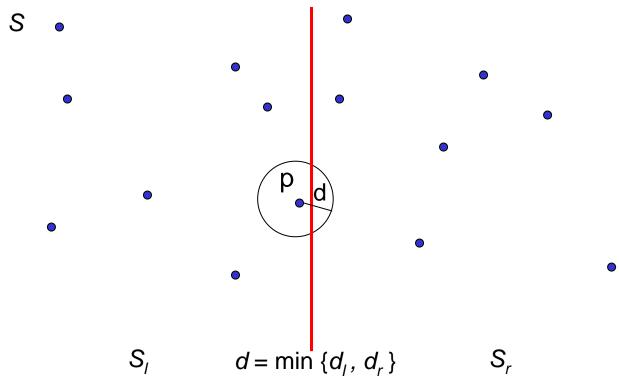
1. Divide: Divide S into two equal sets S_i und S_r .

2. Conquer: $d_l = mindist(S_l)$ $d_r = mindist(S_r)$

3. Merge: $d_{lr} = \min\{d(p_l, p_r) \mid p_l \in S_l, p_r \in S_r\}$

return min $\{d_l, d_r, d_{lr}\}$

Computation of d_{lr} :

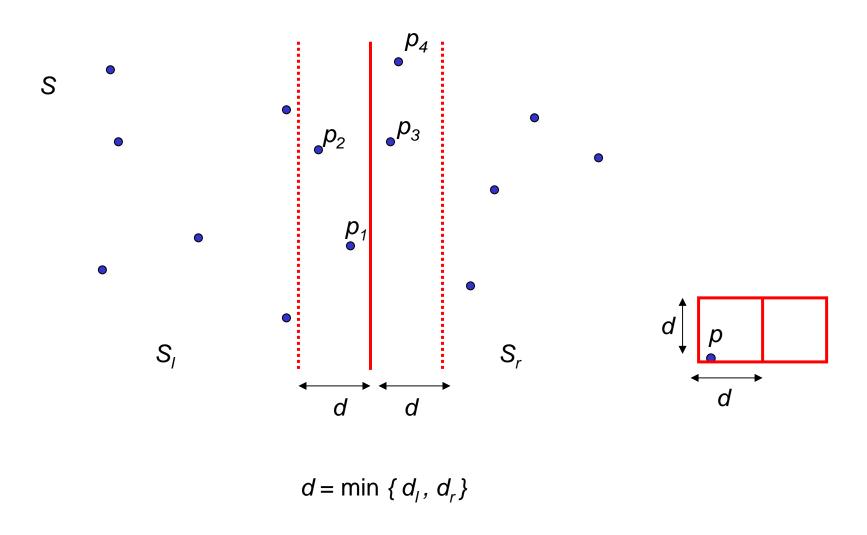


Merge step

- 1. Consider only points within distance *d* of the bisection line, in the order of increasing y-coordinates.
- 2. For each point *p* consider all points *q* within y-distance at most *d*; there are at most 7 such points.

Winter term 07/08 15

Merge step



Implementation

- Initially sort the points in S in order of increasing x-coordinates $O(n \log n)$.
- Once the subproblems S_l , S_r are solved, generate a list of the points in S in order of increasing y-coordinates (merge sort).

Winter term 07/08 17

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$$

- Guess the solution by repeated substitution.
- Verify by induction.

Solution: O(n log n)

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$$

$$T(n) =$$

Verify by induction

$$T(n) \le an \log n$$

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$$

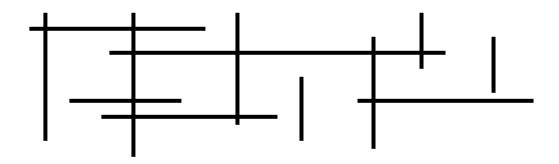
$$n = 2^{i}$$

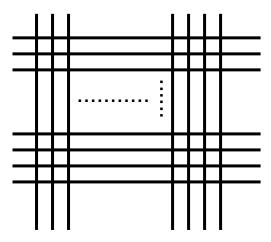
$$i = 1$$
: ok

$$T(2^i) =$$

Line segment intersection

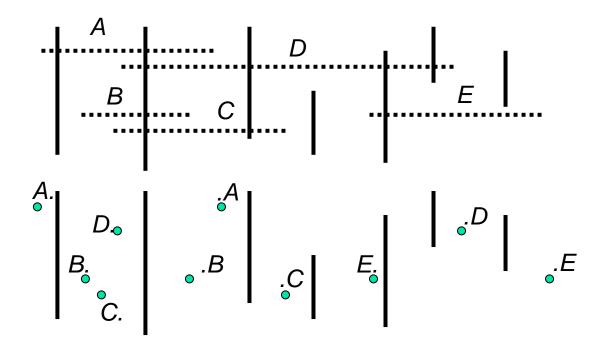
Find all pairs of intersecting line segments.





Line segment intersection

Find all pairs of intersecting line segments.



The representation of the horizontal line segments by their endpoints allows for a vertical partitioning of all objects.

Input: Set S of vertical line segments and endpoints of

horizontal line segments.

Output: All intersections of vertical line segments with horizontal

line segments, for which at least one endpoint is in S.

1. Divide

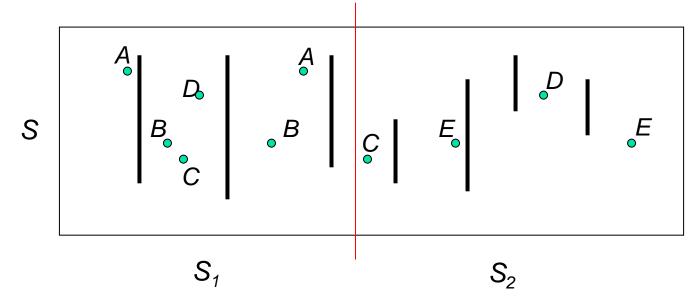
if |S| > 1

then using vertical bisection line L, divide S into equal size

sets S_1 (to the left of L) and S_2 (to the right of L)

else S contains no intersections

1. Divide:



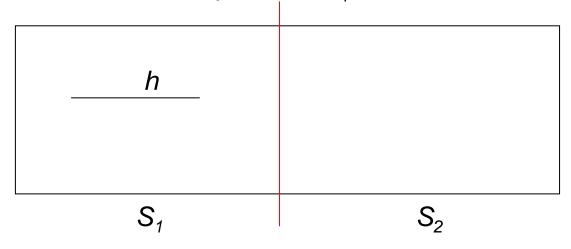
2. Conquer:

ReportCuts(S_1); ReportCuts(S_2)

3. Merge: ???

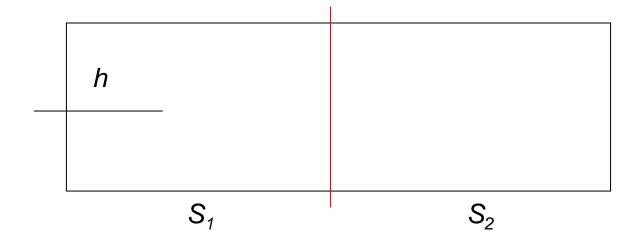
Possible intersections of a horizontal line-segment h in S_1

Case 1: both endpoints in S_1

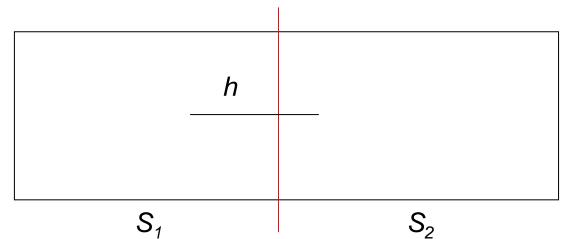


Case 2: only one endpoint of h in S_1

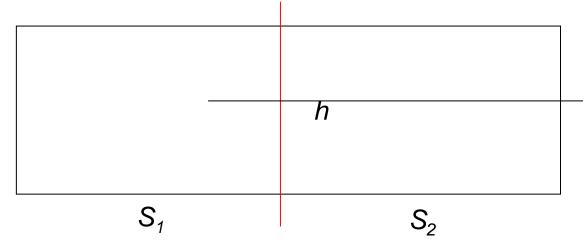
2 a) right endpoint in S_1



2 b) left endpoint of h in S_1



right endpoint in S_2



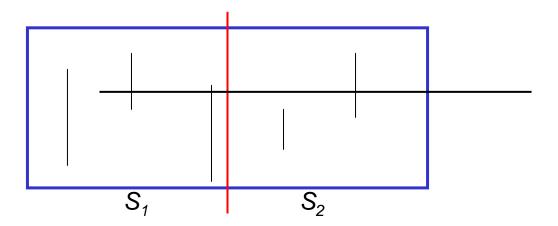
right endpoint not in S_2

Procedure: ReportCuts(S)

3. Merge:

Return the intersections of vertical line segments in S_2 with horizontal line segments in S_1 , for which the left endpoint is in S_1 and the right endpoint is neither in S_1 nor in S_2 .

Proceed analogously for S_1 .



Winter term 07/08 28

Implementation

Set S

L(S): y-coordinates of all left endpoints in S, for which the corresponding right endpoint is not in S.

R(S): y-coordinates of all right endpoints in *S*, for which the corresponding left endpoint is not in *S*.

V(S): y-intervals of all vertical line-segments in S.

Base cases

S contains only one element s.

Case 1:
$$s = (x,y)$$
 is a left endpoint $L(S) = \{y\}$ $R(S) = \emptyset$ $V(S) = \emptyset$

Case 2:
$$s = (x,y)$$
 is a right endpoint $L(S) = \emptyset$ $R(S) = \{y\}$ $V(S) = \emptyset$

Case 3:
$$s = (x, y_1, y_2)$$
 is a vertical line-segment $L(S) = \emptyset$ $R(S) = \emptyset$ $V(S) = \{ [y_1, y_2] \}$

Merge step

Assume that $L(S_i)$, $R(S_i)$, $V(S_i)$ are known for i = 1,2.

$$S = S_1 \cup S_2$$

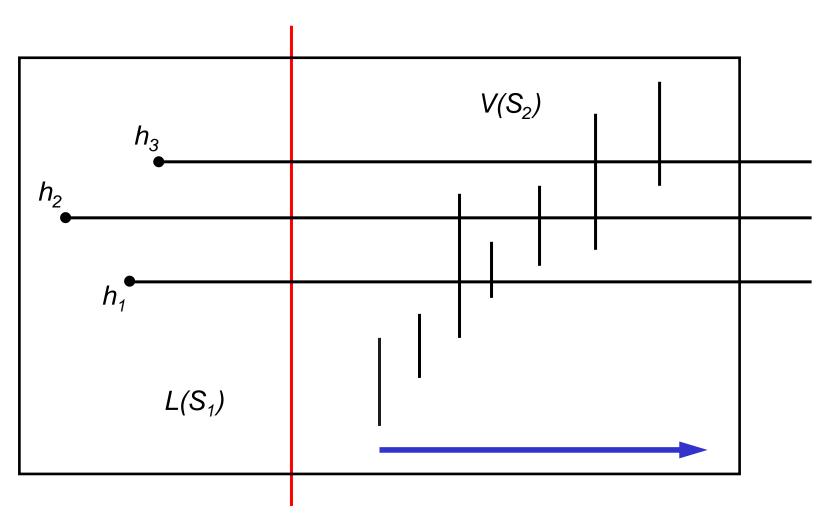
$$L(S) =$$

$$R(S) =$$

L, R: ordered by increasing y-coordinates linked lists

V: ordered by increasing lower endpoints linked list

Output of the intersections



Winter term 07/08 32

Running time

Initially, the input (vertical line segments, left/right endpoints of horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

$$T(n) = 2T(n/2) + an + \text{size of output}$$

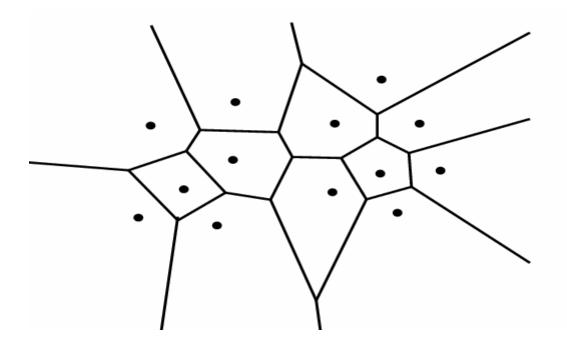
 $T(1) = O(1)$

$$O(n \log n + k)$$
 $k = \# intersections$

Input: Set of sites.

Output: Partition of the plane into regions, each consisting of the

points closer to one particular site than to any other site.



Winter term 07/08 34

P: Set of sites

$$H(p \mid p') = \{x \mid x \text{ is closer to } p \text{ than to } p'\}$$

Voronoi region of p:

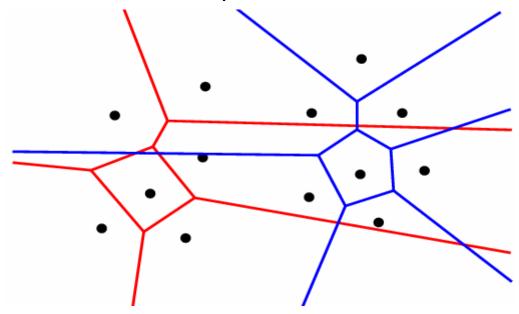
$$VR(p) = \bigcap_{p' \in P \setminus \{p\}} H(p \mid p')$$

Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.

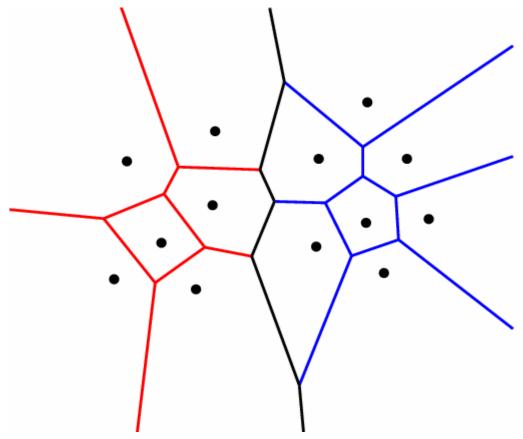
Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition: The Voronoi diagram of a single site is the whole plane.



Merge: Connect the diagrams by adding new edges.

Output: The complete Voronoi diagram.



Running time: $O(n \log n)$, where n is the number of sites.