

Algorithms Theory

06 - Amortized Analysis

Prof. Dr. S. Albers

Amortization

- Consider a sequence a₁, a₂, ..., a_n of
 n operations performed on a data structure D
- T_i = execution time of a_i
- $T = T_1 + T_2 + ... + T_n$ total execution time
- The execution time of a single operation can vary within a large range, e.g. in 1,...,n, but the worst case does not occur for all operations of the sequence.
- Average execution time of an operation is small, even though a single operation can have a high execution time.

Analysis of algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Amortization

Idea:

- Pay more for inexpensive operations
- Use the credit to cover the cost of expensive operations

Three methods:

- 1. Aggregate method
- 2. Accounting method
- 3. Potential method

1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

Operation	Counter value	Cost
	00000	
1	00001	1
2	00010	2
3	00011	1
4	00100	3
5	00101	1
6	00110	2
7	00111	
8	01000	
9	01001	
10	01010	
11	01011	
12	01100	
13 /inter_term_07/08	01101	

Winter term 07/08

2. The accounting method

Observation:

In each step exactly one 0 flips to 1.

Idea:

Pay two cost units for flipping a 0 to a 1

→ each 1 has one cost unit deposited in the banking account

Winter term 07/08

The accounting method

Operation	Counter value
	00000
1	00001
2	00010
3	00011
4	0 0 1 0 0
5	00101
6	0 0 1 1 0
7	00111
8	01000
9	01001
10	01010

Winter term 07/08

3. The potential method

Potential function **\phi**

Data structure $D \rightarrow \phi(D)$

 t_i = actual cost of the *i*-th operation

 ϕ_i = potential after execution of the *i*-th operation (= $\phi(D_i)$)

 a_i = amortized cost of the *i*-th operation

Definition:

$$a_i = t_i + \phi_i - \phi_{i-1}$$

 D_i = counter value after the *i*-th operation $\phi_i = \phi(D_i) = \#$ of 1's in D_i

<i>i</i> —th operation	# of 1's
<i>D_{i-1}</i> :0/11	B_{i-1}
<i>D_i</i> :0/1100	$B_i = B_{i-1} - b_i + 1$

 t_i = actual bit flip cost of operation i= b_i+1

 t_i = actual bit flip cost of operation i a_i = amortized bit flip cost of operation i

$$a_{i} = (b_{i} + 1) + (B_{i-1} - b_{i} + 1) - B_{i-1}$$

$$= 2$$

$$\Rightarrow \sum t_{i} \leq 2n$$

Dynamic tables

Problem:

Maintain a table supporting the operations insert and delete such that

- the table size can be adjusted dynamically to the number of items
- the used space in the table is always at least a constant fraction of the total space
- the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α_T : number of items stored in the table divided by the size of the table

Winter term 07/08 11

Implementation of 'insert'


```
class dynamic table {
   int [] table;
   int size;
                        // size of the table
   int num;
                        // number of items
dynamicTable() {  // initialization of an empty table
  table = new int [1];
  size = 1;
  num = 0;
```

Winter term 07/08 12

Implementation of 'insert'


```
insert ( int x) {
   if (num == size ) {
        newTable = new int [2*size];
        for (i = 0; i < size; i++)
            insert table[i] into newTable;
        table = newTable;
        size = 2*size;
   insert x into table;
   num = num + 1;
```

Winter term 07/08 13

Cost of *n* insertions into an initially empty table IIF

 t_i = cost of the *i*-th insert operation

Worst case:

 $t_i = 1$ if the table is not full prior to operation i $t_i = (i-1) + 1$ if the table is full prior to operation i.

Thus *n* insertions incur a total cost of at most

$$\sum_{i=1}^{n} i = \Theta(n^2)$$

Amortized worst case:

Aggregate method, accounting method, potential method

Potential method

7 table with

- k = T.num items
- s = T.size size

Potential function

$$\phi(T) = 2 k - s$$

Potential method

Properties

- $\phi_0 = \phi(T_0) = \phi$ (empty table) = -1
- Immediately before a table expansion we have k = s, thus $\phi(T) = k = s$.
- Immediately after a table expansion we have k = s/2, thus $\phi(T) = 2k s = 0$.
- For all $i \ge 1$: $\phi_i = \phi(T_i) > 0$ Since $\phi_n - \phi_0 \ge 0$,

$$\sum t_i \le \sum a_i$$

 k_i = # items stored in T after the *i*-th operation

 s_i = table size of T after the *i*-th operation

Case 1: i-th operation does not trigger an expansion

$$K_i = K_{i-1} + 1$$
, $S_i = S_{i-1}$

$$a_i = 1 + (2k_i - s_i) - (2k_{i-1} - s_{i-1})$$

= 1 + 2(k_i - k_{i-1})
= 3

Case 2: i-th operation does trigger an expansion

$$k_i = k_{i-1} + 1$$
, $s_i = 2s_{i-1}$

$$a_i = k_{i-1} + 1 + (2k_i - s_i) - (2k_{i-1} - s_{i-1})$$

Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

Goal:

- (1) The load factor is bounded from below by a constant.
- (2) The amortized cost of a table operation is constant.

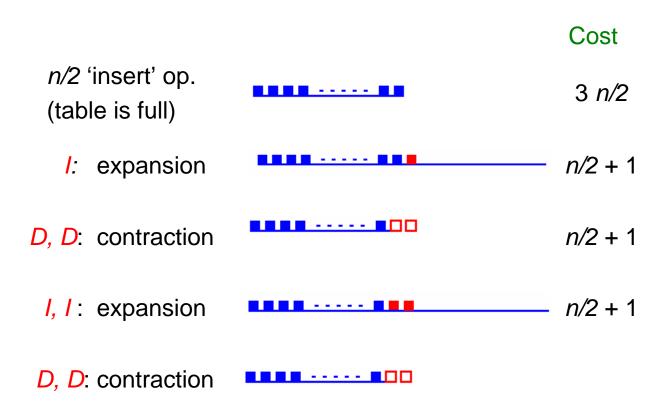
First approach

Expansion: as before

Contraction: Halve the table size when a deletion would cause the

table to become less than half full.

"Bad" sequence of table operations



Total cost of the sequence of operations: $I_{n/2}$, I,D,D,I,I,D,D,... of length n is

Second approach

Expansion: Double the table size when an item is inserted into a full table.

Contraction: Halve the table size when a deletion causes the table to become less than ¼ full.

Property: At any time the table is at least ¼ full, i.e.

$$\frac{1}{4} \leq \alpha(T) \leq 1$$

What is the cost of a sequence of table operations?

Analysis of 'insert' and 'delete' operations

$$k = T.num$$
, $s = T.size$, $\alpha = k/s$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Analysis of 'insert' and 'delete' operations

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Immediately after a table expansion or contraction:

$$s = 2k$$
, thus $\phi(T) = 0$

Analysis of an 'insert' operation

i-th operation: $k_i = k_{i-1} + 1$

Case 1: $\alpha_{i-1} \ge \frac{1}{2}$

Case 2: $\alpha_{i-1} < \frac{1}{2}$

Case 2.1: $\alpha_i < \frac{1}{2}$

Case 2.2: $\alpha_i \geq \frac{1}{2}$

Case 2.1: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i < \frac{1}{2}$ no expansion

Potential function
$$\phi$$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Case 2.2: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i \ge \frac{1}{2}$ no expansion

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2\\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

$$k_i = k_{i-1} - 1$$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.1: deletion does not trigger a contraction $s_i = s_{i-1}$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

$$k_i = k_{i-1} - 1$$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.2: $\alpha_{i-1} < \frac{1}{2}$ deletion does trigger a contraction

$$s_i = s_{i-1}/2$$
 $k_{i-1} = s_{i-1}/4$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1}$$
 $k_i = k_{i-1} - 1$

Case 2.1: $\alpha_i \ge \frac{1}{2}$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1}$$
 $k_i = k_{i-1} - 1$

Case 2.2: $\alpha_i < \frac{1}{2}$

$$\phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2 \\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$