

Algorithms Theory

07 - Binomial Queues

Prof. Dr. S. Albers

Priority queues: operations

(Priority) queue Q

Data structure for maintaining a set of elements, each having an associated priority from a totally ordered universe. The following operations are supported.

Operations:

Q.initialize(): initializes an empty queue Q

Q.isEmpty(): returns true iff Q is empty

Q.insert(e): inserts element e into Q and returns a pointer to the node containing e

Q.deletemin(): returns the element of Q with minimum key and deletes it

Q.min(): returns the element of Q with minimum key

Q.decreasekey(v,k): decreases the value of v's key to the new value k

Priority queues: operations

Additional operations:

Q.delete(v): deletes node v and its element from Q (without searching for v)

Q.meld(Q'): unites Q and Q'(concatenable queue)

Q.search(k): searches for the element with key k in Q (searchable queue)

And many more, e.g. *predecessor*, *successor*, *max*, *deletemax*

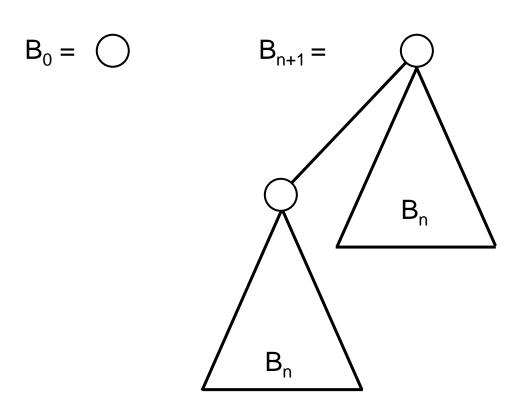
Priority queues: implementations

	List	Heap	Bin. – Q.	FibHp.
insert	O(1)	O(log n)	O(log n)	O(1)
min	O(n)	O(1)	O(log n)	O(1)
delete- min	O(n)	O(log n)	O(log n)	O(log n)*
meld (m≤n)	O(1)	O(n) or O(m log n)	O(log n)	O(1)
decrkey	O(1)	O(log n)	O(log n)	O(1)*

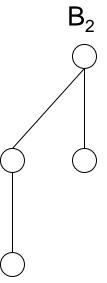
^{*=} amortized cost Q.delete(e) = Q.decreasekey(e, -∞) + Q.deletemin()

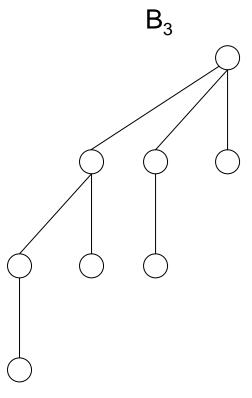
Definition

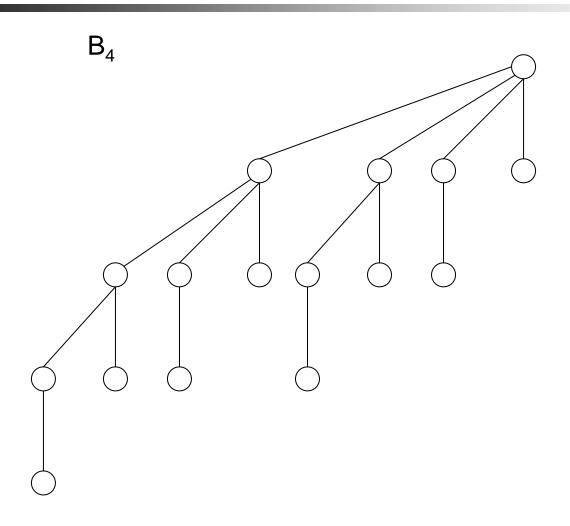
Binomial tree B_n of order n $(n \ge 0)$



Binomial trees

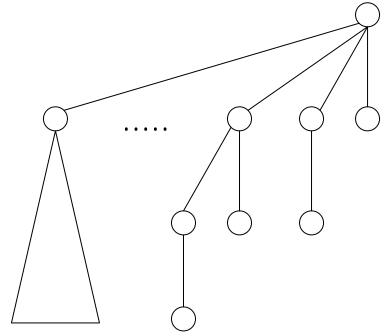






Properties

- 1. B_n contains 2^n nodes.
- 2. The height of B_n is n.
- 3. The root of B_n has degree n.
- 4. $B_n =$



5. There are exactly $\binom{n}{i}$ nodes at depth i in B_n .

Binomial coefficients

 $\binom{n}{i}$ = # *i*-element subsets that can be chosen from an *n*-element set

Pascal's triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4

There are exactly $\binom{n}{i}$ nodes at depth i in B_n .

Binomial queues

Binomial queue Q:

Set of heap ordered binomial trees of different order to store keys.

n keys:

$$B_i \in \mathbb{Q}$$
 i-th bit in $(n)_2 = 1$

9 keys:

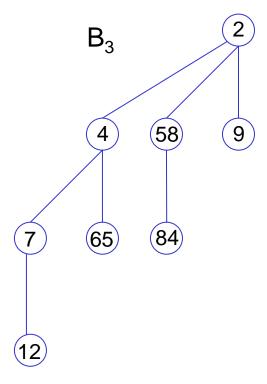
$$\{2, 4, 7, 9, 12, 23, 58, 65, 85\}$$

 $9 = (1001)_2$

9 keys:

$$\{2, 4, 7, 9, 12, 23, 58, 65, 85\}$$

9 = $(1001)_2$



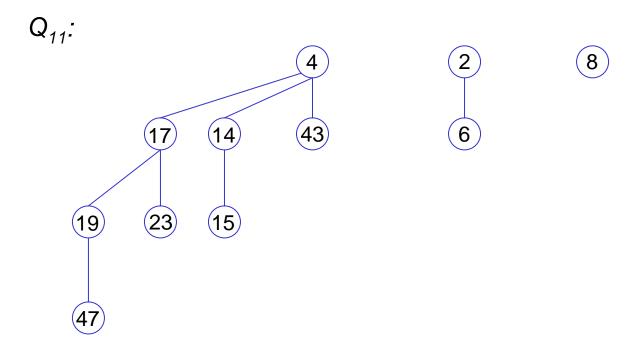
Min can be determined in O(log *n*) time.

Binomial queues: 2nd example

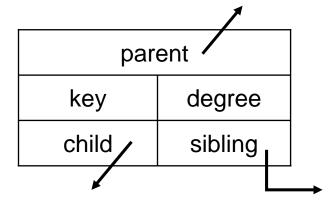
11 keys:

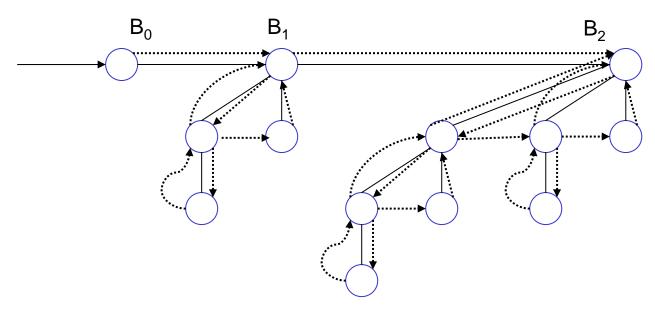
 $\{2, 4, 6, 8, 14, 15, 17, 19, 23, 43, 47\}$ $11 = (1011)_2 \rightarrow 3$ binomial trees

 B_3 , B_1 and B_0



Structure of a node:



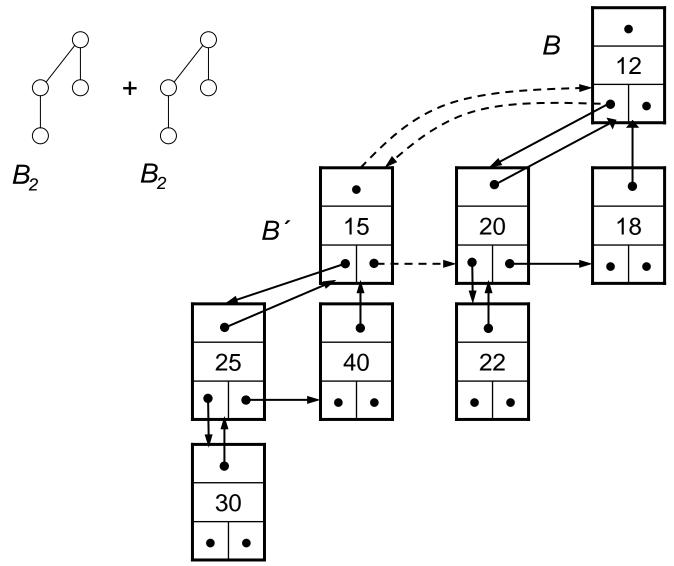


Binomial trees: operation 'meld' ('link')

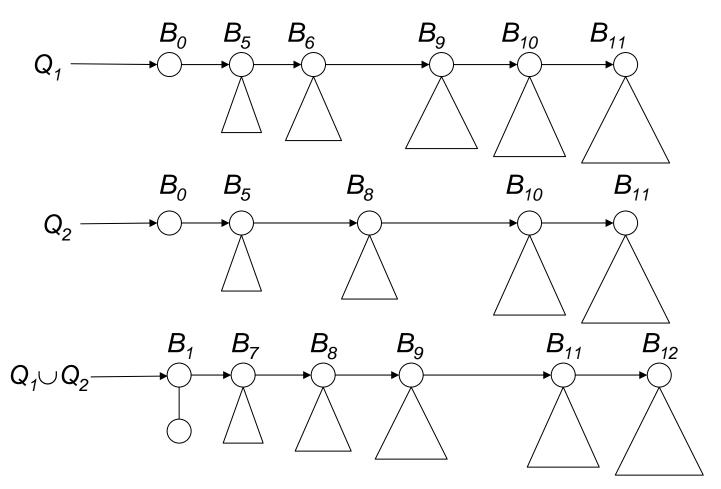
Unite two binomial trees B, B' of the same order

$$B_n + B_n \rightarrow B_{n+1}$$

procedure Link:



Binomial queues: operation 'meld'



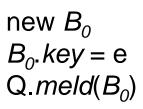
If the operation yields a B_i and the initial lists both contain a B_i , then unite the initial B_i 's.

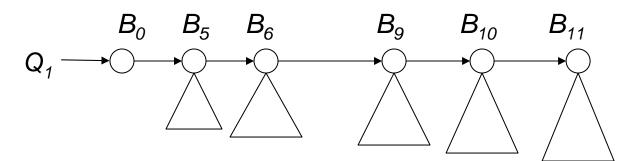
Running time: O (log n)

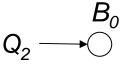
Q.initialize:

$$Q.root = null$$

Q.insert(e):







Running time: O(log *n*)

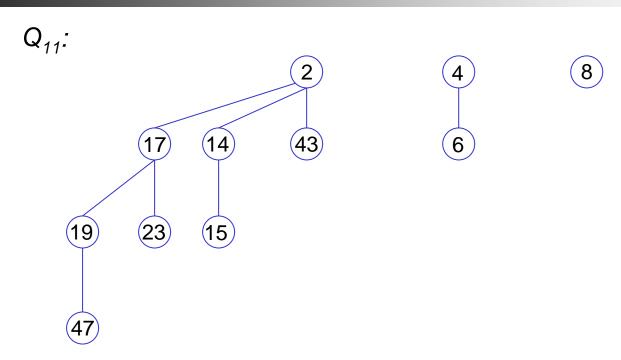
Binomial queues: 'deletemin'

Q.deletemin():

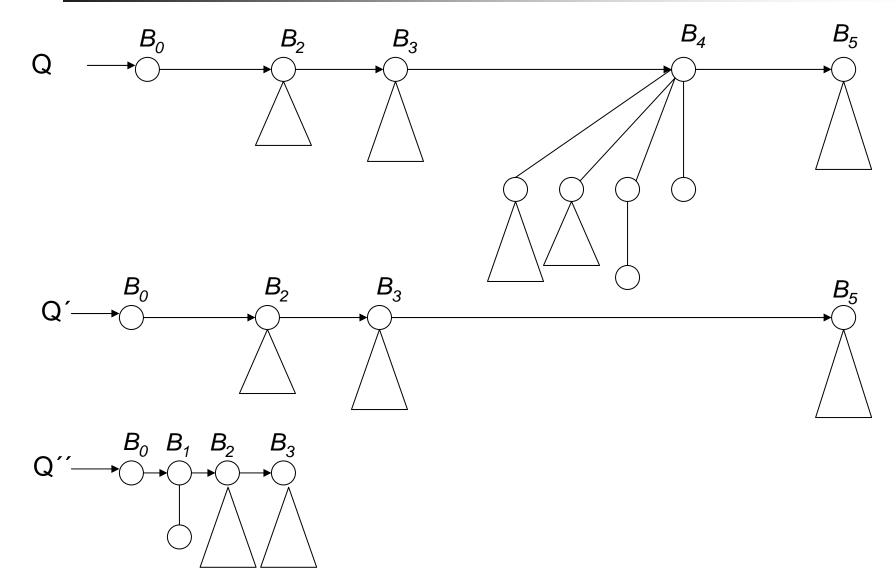
- 1. Determine B_i whose root has the minimum key in the root list and delete B_i from Q (returns Q')
- 2. Insert the children of B_i in reverse order into a new queue : B_0 , B_1 ,, $B_{i-1} \rightarrow Q''$
- **3.** Q'.meld(Q'')

Running time: O(log n)

Binomial queues: 'deletemin', 1st example



Binomial queues: 'deletemin', 2nd example



Binomial queues: 'decreasekey'

Q.decreasekey(v, k):

- 1. v.element.key := k
- 2. Repeatedly exchange *v.element* with the element of *v*'s parent, until the heap property is restored.

Running time: O (log n)

14

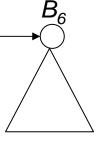
4

58

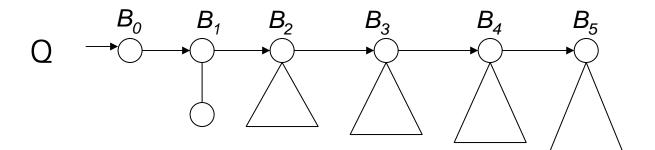
9

Binomial queues: worst case sequence of operations

Q



Q.deletemin():



Running time: O(log *n*)