
Winter term 07/08

Prof. Dr. S. Albers

Algorithms Theory

08 – Fibonacci Heaps

2Winter term 07/08

Priority queues: operations

Priority queue Q

Operations:

Q.initialize(): initializes an empty queue Q
Q.isEmpty(): returns true iff Q is empty
Q.insert(e): inserts element e into Q and returns a pointer to the node

containing e
Q.deletemin(): returns the element of Q with minimum key and deletes it
Q.min(): returns the element of Q with minimum key
Q.decreasekey(v,k): decreases the value of v‘s key to the new value k

3Winter term 07/08

Priority queues: operations

Additional operations:

Q.delete(v) : deletes node v and its element from Q
(without searching for v)

Q.meld(Q´): unites Q and Q´ (concatenable queue)

Q.search(k) : searches for the element with key k in Q
(searchable queue)

And many more, e.g. predecessor, successor, max, deletemax

4Winter term 07/08

Priority queues: implementations

O(1)*O(log n)O(log n)O(1)decr.-key

O(1)O(log n)
O(n) or
O(m log n)

O(1)meld
(m≤n)

O(log n)*O(log n)O(log n)O(n)delete-
min

O(1)O(log n)O(1)O(n)min

O(1)O(log n)O(log n)O(1)insert

Fib.-Hp.Bin. – Q.HeapList

*= amortized cost
Q.delete(e) = Q.decreasekey(e, -∞) + Q.deletemin()

5Winter term 07/08

Fibonacci heaps

„Lazy-meld“ version of binomial queues:
The melding of trees having the same order is delayed until the next
deletemin operation.

Definition
A Fibonacci heap Q is a collection heap-ordered trees.

Variables
Q.min: root of the tree containing the minimum key
Q.rootlist: circular, doubly linked, unordered list containing the roots

of all trees
Q.size: number of nodes currently in Q

6Winter term 07/08

Trees in Fibonacci heaps

Let B be a heap-ordered tree in Q.rootlist:

B.childlist: circular, doubly linked and unordered list of the children of B

Structure of a node

markchild

degreekey

right

parent

left

Advantages of circular, doubly linked lists:

1. Deleting an element takes constant time.
2. Concatenating two lists takes constant time.

7Winter term 07/08

Implementation of Fibonacci heaps: Example

8Winter term 07/08

Operations on Fibonacci heaps

Q.initialize(): Q.rootlist = Q.min = null

Q.meld(Q´):
1. concatenate Q.rootlist and Q´.rootlist
2. update Q.min

Q.insert(e):
1. generate a new node with element e Q´
2. Q.meld(Q´)

Q.min():
return Q.min.key

9Winter term 07/08

Fibonacci heaps: ‘deletemin’

Q.deletemin()
/*Delete the node with minimum key from Q and return its element.*/
1 m = Q.min()
2 if Q.size() > 0
3 then remove Q.min() from Q.rootlist
4 add Q.min.childlist to Q.rootlist
5 Q.consolidate()

/* Repeatedly meld nodes in the root list having the same
degree. Then determine the element with minimum key. */

6 return m

10Winter term 07/08

Fibonacci heaps: maximum degree of a node

rank(v) = degree of node v in Q
rank(Q) = maximum degree of any node in Q

Assumption:
rank(Q) ≤ 2 log n,

if Q.size = n.

11Winter term 07/08

Fibonacci heaps: operation ‘link’

B B´
link

B

B´

1. rank(B) = rank(B) + 1
2. B´.mark = false

rank(B) = degree of the root of B
Heap-ordered trees B,B´ with rank(B) = rank(B´)

12Winter term 07/08

Consolidation of the root list

13Winter term 07/08

Consolidation of the root list

14Winter term 07/08

Fibonacci heaps: ‘deletemin’
Find roots having the same rank:
Array A:

0 1 2 log n

Q.consolidate()

1 A = array of length 2 log n pointing to Fibonacci heap nodes
2 for i = 0 to 2 log n do A[i] = null
3 while Q.rootlist ≠ ∅ do
4 B = Q.delete-first()
5 while A[rank(B)] is not null do
6 B´ = A[rank(B)]; A[rank(B)] = null; B = link(B,B´)
7 end while
8 A[rang(B)] = B
9 end while
10 determine Q.min

15Winter term 07/08

Fibonacci heap: Example

16Winter term 07/08

Fibonacci heap: Example

17Winter term 07/08

Fibonacci heaps: ‘decreasekey’

Q.decreasekey(v,k)
1 if k > v.key then return
2 v.key = k
3 update Q.min
4 if v ∈ Q.rootlist or k ≥ v.parent.key then return
5 do /* cascading cuts */
6 parent = v.parent
7 Q.cut(v)
8 v = parent
9 while v.mark and v∉ Q.rootlist

10 if v ∉ Q.rootlist then v.mark = true

18Winter term 07/08

Fibonacci heaps: ‘cut’

Q.cut(v)

1 if v ∉ Q.rootlist
2 then /* cut the link between v and its parent */
3 rank (v.parent) = rank (v.parent) – 1
4 v.parent = null
5 remove v from v.parent.childlist
6 add v to Q.rootlist

19Winter term 07/08

Fibonacci heaps: marks

History of a node:

v is being linked to a node v.mark = false

a child of v is cut v.mark = true

a second child of v is cut cut v

The boolean value mark indicates whether node v has
lost a child since the last time v was made the child of
another node.

20Winter term 07/08

Rank of the children of a node

Lemma

Let v be a node in a Fibonacci-Heap Q. Let u1,...,uk denote the children
of v in the order in which they were linked to v. Then:

rank(ui) ≥ i - 2.
Proof:

At the time when ui was linked to v:

children of v (rank(v)): ≥ i - 1
children of ui (rank(ui)): ≥ i - 1
children ui may have lost: 1

21Winter term 07/08

Maximum rank of a node

Theorem
Let v be a node in a Fibonacci heap Q, and let rank(v) = k . Then v is
the root of a subtree that has at least Fk+2 nodes.

The number of descendants of a node grows exponentially in the
number of children.

Implication:
The maximum rank k of any node v in a Fibonacci heap Q with n nodes
satisfies:

22Winter term 07/08

Maximum rank of a node
Proof
Sk = minimum possible size of a subtree whose root has rank k
S0 = 1
S1 = 2

There is:

Fibonacci numbers:

(1) + (2) + induction Sk ≥ Fk+2

∑
−

=
≥+≥

2

0
(1) 2for 2

k

i
ik kSS

k

k

i
ik

FFF

FF

++++=

+= ∑
=

+

K10

0
2

1

(2) 1

23Winter term 07/08

Analysis of Fibonacci heaps

Potential method to analyze Fibonacci heap operations.

Potential ΦQ of Fibonacci heap Q:

ΦQ = rQ + 2 mQ

where
rQ = number of nodes in Q.rootlist
mQ= number of all marked nodes in Q,

that are not in the root list.

24Winter term 07/08

Amortized analysis

Amortized cost ai of the i-th operation:

ai = ti + Φi - Φi-1

= ti + (ri –ri-1) + 2(mi – mi-1)

25Winter term 07/08

Analysis of ‘insert’

insert

ti = 1

ri –ri-1 = 1

mi – mi-1 = 0

ai = 1 + 1 + 0 = O(1)

26Winter term 07/08

Analysis of ‘deletemin’

deletemin:

ti = ri-1 + 2 log n

ri – ri-1 ≤ 2 log n - ri-1

mi – mi-1 ≤ 0

ai ≤ ri-1 + 2 log n + 2 log n – ri-1 + 0

= O(log n)

27Winter term 07/08

Analysis of ‘decreasekey’

decreasekey:

ti = c + 2

ri – ri-1 = c + 1

mi – mi-1 ≤ - c + 1

ai ≤ c + 2 + c + 1 + 2 (- c + 1)

= O(1)

28Winter term 07/08

Priority queues: comparison

O(1)*O(log n)O(log n)O(1)decr.-key

O(1)O(log n)
O(n) or
O(m log n)

O(1)meld
(m≤n)

O(log n)*O(log n)O(log n)O(n)delete-
min

O(1)O(log n)O(1)O(n)min

O(1)O(log n)O(log n)O(1)insert

Fib.-Hp.Bin. – Q.HeapList

* = amortized cost

