

Algorithms Theory

08 – Fibonacci Heaps

Prof. Dr. S. Albers

Winter term 07/08

Priority queues: operations

Priority queue Q

Operations:

Q.initialize(): initializes an empty queue Q

Q.isEmpty(): returns true iff Q is empty

Q.insert(e): inserts element e into Q and returns a pointer to the node containing e

Q.deletemin(): returns the element of Q with minimum key and deletes it

Q.min(): returns the element of Q with minimum key

Q.decreasekey(v,k): decreases the value of v's key to the new value k

Additional operations:

Q.delete(v) : deletes node v and its element from Q (without searching for v)

Q.meld(Q'): unites Q and Q' (concatenable queue)

Q.search(k) : searches for the element with key k in Q (searchable queue)

And many more, e.g. *predecessor, successor, max, deletemax*

Priority queues: implementations

	List	Неар	Bin. – Q.	FibHp.
insert	O(1)	O(log n)	O(log n)	O(1)
min	O(n)	O(1)	O(log n)	O(1)
delete- min	O(n)	O(log n)	O(log n)	O(log n)*
meld (m≤n)	O(1)	O(n) or O(m log n)	O(log n)	O(1)
decrkey	O(1)	O(log n)	O(log n)	O(1)*

*= amortized cost Q.delete(e) = Q.decreasekey(e, -∞) + Q.deletemin()

"Lazy-meld" version of binomial queues:

The melding of trees having the same order is delayed until the next deletemin operation.

Definition

A Fibonacci heap Q is a collection heap-ordered trees.

Variables

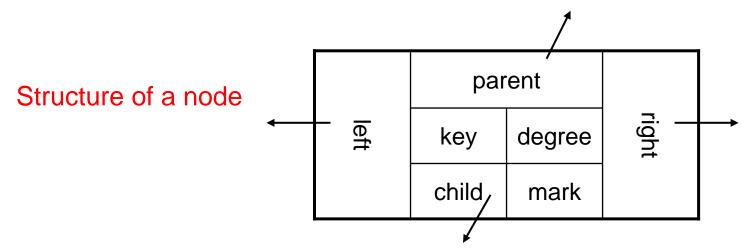
Q.min: root of the tree containing the minimum key
 Q.rootlist: circular, doubly linked, unordered list containing the roots of all trees

Q.size: number of nodes currently in Q

Trees in Fibonacci heaps

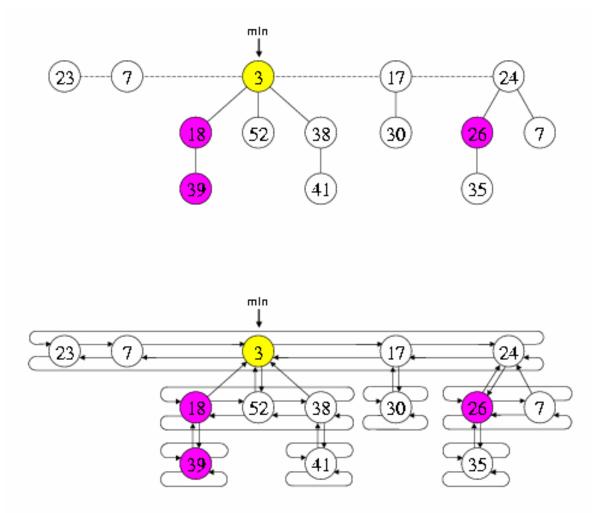
Let *B* be a heap-ordered tree in *Q.rootlist*.

B.childlist: circular, doubly linked and unordered list of the children of B



Advantages of circular, doubly linked lists:

- 1. Deleting an element takes constant time.
- 2. Concatenating two lists takes constant time.



Operations on Fibonacci heaps

Q.initialize(): Q.rootlist = Q.min = null

Q.meld(Q´):

- 1. concatenate Q.rootlist and Q'.rootlist
- 2. update Q.min

Q.insert(e):

- 1. generate a new node with element $e \rightarrow Q'$
- 2. Q.meld(Q')

Q.min():

return Q.min.key

Q.deletemin()

/*Delete the node with minimum key from Q and return its element.*/

- 1 m = Q.min()
- 2 if Q.size() > 0
- 3 then remove *Q.min()* from *Q.rootlist*
- 4 add Q.min.childlist to Q.rootlist
- 5 Q.consolidate()
 - /* Repeatedly meld nodes in the root list having the same degree. Then determine the element with minimum key. */
- 6 return m

rank(v) = degree of node v in Qrank(Q) = maximum degree of any node in Q

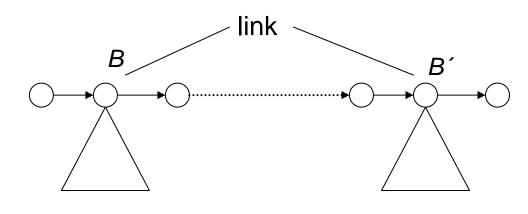
Assumption:

 $rank(Q) \leq 2 \log n$,

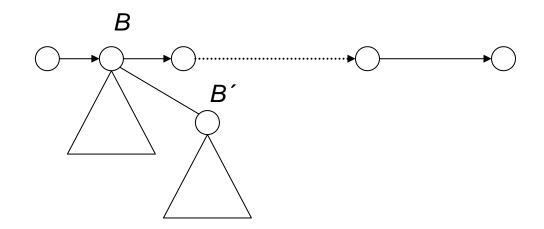
if Q.size = n.

Fibonacci heaps: operation 'link'

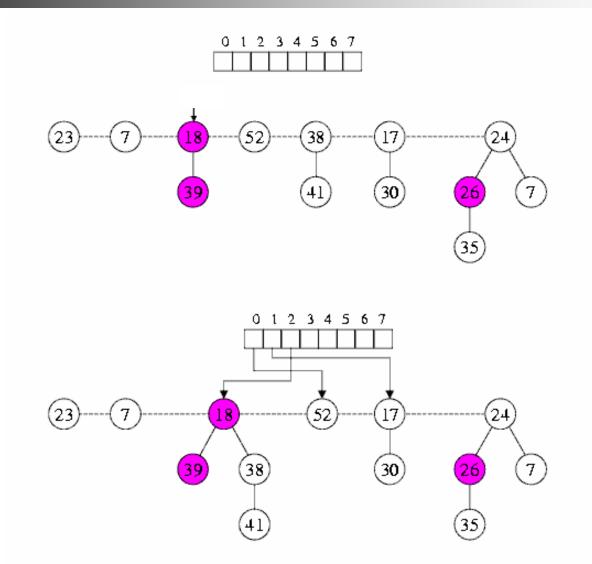
rank(B) = degree of the root of B
Heap-ordered trees B,B´ with rank(B) = rank(B´)



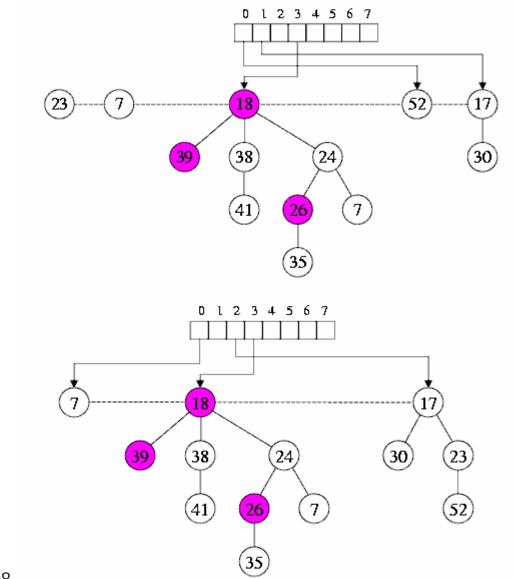
rank(B) = rank(B) + 1
 B´.mark = false



Consolidation of the root list



Consolidation of the root list



Fibonacci heaps: 'deletemin'

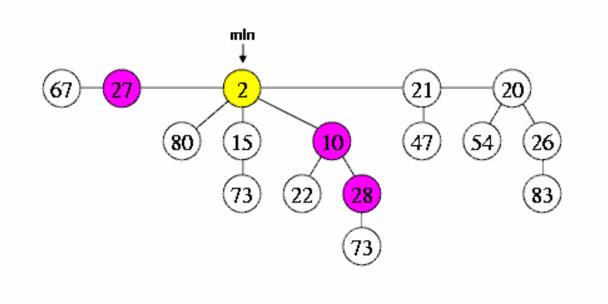
Find roots having the same rank: Array *A*:

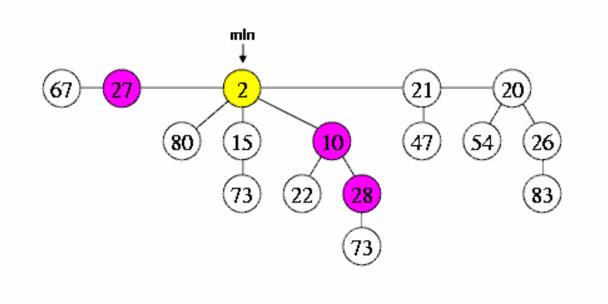
0 1

2 log *n*

Q.consolidate()

A = array of length 2 log *n* pointing to Fibonacci heap nodes 1 for i = 0 to 2 log n do A[i] = null 2 while Q.rootlist $\neq \emptyset$ do 3 4 B = Q.delete-first()5 while A[rank(B)] is not null do B' = A[rank(B)]; A[rank(B)] = null; B = link(B,B')6 7 end while A[rang(B)] = B8 9 end while 10 determine Q.min





Fibonacci heaps: 'decreasekey'

Q.decreasekey(v,k)

- 1 if k > v.key then return
- 2 v.key = k
- 3 update Q.min
- 4 if $v \in Q$.rootlist or $k \ge v$.parent.key then return
- 5 do /* cascading cuts */
- 6 *parent = v.parent*
- 7 Q.cut(v)
- 8 v = parent
- 9 while v.mark and $v \notin Q$.rootlist
- 10 if $v \notin Q$.rootlist then v.mark = true

Fibonacci heaps: 'cut'

Q.cut(v)

- 1 if $v \notin Q$.rootlist
- 2 then /* cut the link between v and its parent */
- 3 rank (v.parent) = rank (v.parent) 1
- 4 *v.parent = null*
- 5 remove *v* from *v.parent.childlist*
- 6 add *v* to *Q.rootlist*

Fibonacci heaps: marks

History of a node:

<i>v</i> is being linked to a node	\rightarrow v.mark = false		
a child of <i>v</i> is cut	\rightarrow v.mark = true		
a second child of v is cut	→ cut v		

The boolean value *mark* indicates whether node *v* has lost a child since the last time *v* was made the child of another node.

Lemma

Let v be a node in a Fibonacci-Heap Q. Let $u_1, ..., u_k$ denote the children of v in the order in which they were linked to v. Then:

 $rank(u_i) \ge i - 2.$

Proof:

At the time when u_i was linked to v:

children of v (rank(v)): $\geq i - 1$ # children of u_i (rank(u_i)): $\geq i - 1$ # children u_i may have lost: 1

Theorem

Let v be a node in a Fibonacci heap Q, and let rank(v) = k. Then v is the root of a subtree that has at least F_{k+2} nodes.

The number of descendants of a node grows exponentially in the number of children.

Implication:

The maximum rank *k* of any node *v* in a Fibonacci heap *Q* with *n* nodes satisfies:

Maximum rank of a node

Proof

 S_k = minimum possible size of a subtree whose root has rank k $S_0 = 1$ $S_1 = 2$

There is:

$$S_k \ge 2 + \sum_{i=0}^{k-2} S_i \text{ for } k \ge 2$$
 (1)

Fibonacci numbers:

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$
(2)
= 1 + F_0 + F_1 + ... + F_k
(1) + (2) + induction $\rightarrow S_k \ge F_{k+2}$

Analysis of Fibonacci heaps

Potential method to analyze Fibonacci heap operations.

Potential Φ_Q of Fibonacci heap Q:

 $\Phi_{\rm Q} = r_{\rm Q} + 2 m_{\rm Q}$

where

 r_Q = number of nodes in *Q.rootlist* m_Q = number of all marked nodes in *Q*, that are not in the root list.

Amortized analysis

Amortized cost a_i of the *i*-th operation:

$$\begin{aligned} \mathbf{a}_{i} &= t_{i} + \Phi_{i} - \Phi_{i-1} \\ &= t_{i} + (r_{i} - r_{i-1}) + 2(m_{i} - m_{i-1}) \end{aligned}$$

Analysis of 'insert'

insert

 $t_i = 1$

 $r_i - r_{i-1} = 1$

 $m_i - m_{i-1} = 0$

 $a_i = 1 + 1 + 0 = O(1)$

Analysis of 'deletemin'

deletemin:

$$t_i = r_{i-1} + 2 \log n$$

 $r_i - r_{i-1} \le 2 \log n - r_{i-1}$
 $m_i - m_{i-1} \le 0$

$$a_i \le r_{i-1} + 2 \log n + 2 \log n - r_{i-1} + 0$$

= $O(\log n)$

Analysis of 'decreasekey'

decreasekey:

 $t_{i} = c + 2$ $r_{i} - r_{i-1} = c + 1$ $m_{i} - m_{i-1} \leq -c + 1$ $a_{i} \leq c + 2 + c + 1 + 2(-c + 1)$

$$= O(1)$$

Priority queues: comparison

	List	Неар	Bin. – Q.	FibHp.
insert	O(1)	O(log n)	O(log n)	O(1)
min	O(n)	O(1)	O(log n)	O(1)
delete- min	O(n)	O(log n)	O(log n)	O(log n)*
meld (m≤n)	O(1)	O(n) or O(m log n)	O(log n)	O(1)
decrkey	O(1)	O(log n)	O(log n)	O(1)*

* = amortized cost