Algorithms Theory

09 — Union-Find Data Structures

Prof. Dr. S. Albers

Winter term 07/08

Union-find data structures nr

Problem:

Maintain a collection of disjoint sets while supporting the following
operations:

e.make-set(): Creates a new set whose only member is e.

e.find-set(): Returns the set M, containing e.

union(M;, M;): Unites the sets M; and M; into a new set.

Winter term 07/08 2

Union-find data structures nr

Representation of set M. :

M, is identified by a representative, which is some
member of M.

Winter term 07/08 3

Union-find data structures "r

Operations using representatives:

e.make-set():
Creates a new set whose only member is e. The representative is e.

e.find-set():
Returns the name of the representative of the set containing e.

e.union(f):
Unites the sets M, and M; that contain e and f into a new set M and
returns a member of M, U M; as the new representative of M.

The sets M, and M, are then ,destroyed".

Winter term 07/08 4

Observations nr

= If nis the number of make-set operations and m the total number of
make-set, find-set and union operations, then

= m>=n
= after at most (n — 1) union operations, only one set remains in
the collection

Winter term 07/08 5

Application: Connected components "F

Input: graph G =(V,E)
Output: collection of the connected components of G

Algorithm: Connected-Components
for all vin V do v.make-set()
for all (u,v) in E do
If u.find-set() =v.find-set()
then u.union(v)

Same-Component (u,v):

If u.findset() = v.findset()
then return true

Winter term 07/08

Linked-list representation nr

— e b f a
R , R o X.make-set()
 Xx.find-set()
o X.union(y)
— g h d

Winter term 07/08 7

Linked-list representation nr

b.union(d)

\ 4
\ 4
\ 4
\ 4
\ 4
\ 4

Winter term 07/08 8

,Bad“ sequence of operations 0||r

—
e;.make-set() |e,
—

e,.make-set() |e,
:]
e,.make-set() e,

.]] C
e,.union(e,) e, e, - e, e,

. C AT > W]
e;.union(e >
.3 (2) e, e,——|€, Ex——|E5 1

_ C 1 1C |
e,.union(e, ;) e.— e.—..|e, G (S5 == R [

The longer list is always appended to the shorter list!
Pointer updates for the i-th operation e;.union(e;_,):
Running time of 2n -1 operations:

Winter term 07/08 9

Improvement IIF

Weighted-union heuristic

Always append the smaller list to the longer list.
(Maintain the length of a list as a parameter).

Theorem
Using the weighted-union heuristic, the running time of a sequence of m

make-set, find-set, and union operations, n of which are make-set() operations,
is O(m + n log n).

Proof
Consider element e.

Number of times e's pointer to the representative is updated:
log n

Winter term 07/08 10

Disjoint-set forests nr

» a.make-set()

e y.find-set()

 d.union(e): Make the representative of one set (e.g. f) the parent of
the representative of the other set.

Winter term 07/08 11

Example nr

m = total number of operations (> 2n)

fori=1to ndo e.make-set()
fori=2to ndo e.union(e,)
fori=1to fdo e,.find-set()

n-th step

running time of f find-set operations: O(f * n)

Winter term 07/08 12

Union by size nr

additional variable:
e.size = (# nodes in the subtree rooted at e)

e.make-set()
1 e.parent=e
2 esize=1

e.union(f)
1 link(e.find-set(), f.find-set())

Winter term 07/08 13

Union by size nr

link(e,f)

1if e.size >f.size
2 thenf.parent=e
e.size = e.size + f.size
else [* e.size < f.size */
e.parent = f
f.size = e.size + f.size

O O A W

Winter term 07/08 14

Union by size nr

Theorem
The method union-by-size maintains the following invariant:
A tree of height h contains at least 2" nodes.

A A

Proof

Winter term 07/08 15

Union by size nr

Case 1: The height of the new tree is equal to the height of T,.

9,+9,20,22"

Case 2: The new tree T has a greater height.
heightof T: h, +1

g=g0,+9,>2"+2"=2""

Consequence

The running time of a find-set operation is O(log n), where n is the
number of make-set operations.

Winter term 07/08 16

Path compression during ‘find-set’ operations nr

nh m*f

e.find-set()
1 if e ze.parent
2 then e.parent = e.parent.find-set()

3 return e.parent

Winter term 07/08 17

Analysis of the running time nr

m total number of operations,

f of which are find-set operations and
n of which are make-set operations
- at most n — 1 union operations

Union by size:
O(n + flog n)

find-set operation with path compression:
Iff<n, &n+flog n)

Iff>n, &flog, .4, N)

Winter term 07/08 18

Analysis of the running time "r

Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the
running time of m disjoint-set operations on n elements is

O(m* o (m,n)),

where « (m,n) is the inverse of Ackermann’s function.

Winter term 07/08 19

Ackermann’s function and Iits inverse

Ackermann’s function

A(l,)) =2 forj>1
A(,1) =A@ —1,2) fori>2
AGl,) =AG-1,A(%,j-1) forij=>2

inverse of Ackermann’s function

a(m,n) =min{i >1A(i,[m/n])> logn}

Winter term 07/08

)

20

Ackermann’s function and Iits inverse "ur

a(m,n)< 4, for n satisfying logn < 2°**

Winter term 07/08 21

