
Winter term 07/08

Prof. Dr. S. Albers

Algorithms Theory

09 – Union-Find Data Structures

2Winter term 07/08

Union-find data structures

Problem:
Maintain a collection of disjoint sets while supporting the following
operations:

e.make-set(): Creates a new set whose only member is e.

e.find-set(): Returns the set Mi containing e.

union(Mi , Mj): Unites the sets Mi and Mj into a new set.

3Winter term 07/08

Union-find data structures

Representation of set Mi :

Mi is identified by a representative, which is some
member of Mi.

4Winter term 07/08

Union-find data structures

Operations using representatives:

e.make-set():
Creates a new set whose only member is e. The representative is e.

e.find-set():
Returns the name of the representative of the set containing e.

e.union(f):
Unites the sets Me and Mf that contain e and f into a new set M and
returns a member of Me ∪ Mf as the new representative of M.
The sets Me and Mf are then „destroyed“.

5Winter term 07/08

Observations

If n is the number of make-set operations and m the total number of
make-set, find-set and union operations, then

m >= n
after at most (n – 1) union operations, only one set remains in
the collection

6Winter term 07/08

Application: Connected components

Input: graph G = (V,E)
Output: collection of the connected components of G

Algorithm: Connected-Components
for all v in V do v.make-set()
for all (u,v) in E do

if u.find-set() ≠ v.find-set()
then u.union(v)

Same-Component (u,v):
if u.findset() = v.findset()
then return true

7Winter term 07/08

e

Linked-list representation

b f a

g h d

• x.make-set()
• x.find-set()
• x.union(y)

8Winter term 07/08

Linked-list representation

e b f a g h d

b.union(d)

9Winter term 07/08

„Bad“ sequence of operations

e1e1.make-set()

e2e2.make-set()

enen.make-set()

.. .

e1e2 e1e2
e2.union(e1)

e3.union(e2) e3 e1e2 e3 e1e2...

en.union(en-1) en e1en-1 en e1en-1

The longer list is always appended to the shorter list!
Pointer updates for the i-th operation ei.union(ei-1):
Running time of 2n -1 operations:

10Winter term 07/08

Improvement
Weighted-union heuristic

Always append the smaller list to the longer list.
(Maintain the length of a list as a parameter).

Theorem
Using the weighted-union heuristic, the running time of a sequence of m
make-set, find-set, and union operations, n of which are make-set() operations,
is O(m + n log n).

Proof
Consider element e.
Number of times e‘s pointer to the representative is updated:

log n

11Winter term 07/08

c

Disjoint-set forests

h e

b

f

d

g

r

s

i x

y

u

v

a

• a.make-set()
• y.find-set()
• d.union(e): Make the representative of one set (e.g. f) the parent of

the representative of the other set.

12Winter term 07/08

Example
m = total number of operations (≥ 2n)

for i = 1 to n do ei.make-set()
for i = 2 to n do ei.union(ei -1)
for i = 1 to f do e1.find-set()

n-th step

running time of f find-set operations: O(f * n)

n

13Winter term 07/08

Union by size

additional variable:
e.size = (# nodes in the subtree rooted at e)

e.make-set()
1 e.parent = e
2 e.size = 1

e.union(f)
1 link(e.find-set(), f.find-set())

14Winter term 07/08

Union by size

link(e,f)

1 if e.size ≥ f.size
2 then f.parent = e
3 e.size = e.size + f.size
4 else /* e.size < f.size */
5 e.parent = f
6 f.size = e.size + f.size

15Winter term 07/08

Union by size
Theorem
The method union-by-size maintains the following invariant:

A tree of height h contains at least 2h nodes.

Proof

h1 h2T1 T2

1211
hTg ≥= 2222

hTg ≥=

T1

T2

16Winter term 07/08

Union by size

Case 1: The height of the new tree is equal to the height of T1.

Case 2: The new tree T has a greater height.
height of T: h2 + 1

Consequence

The running time of a find-set operation is O(log n), where n is the
number of make-set operations.

12121
hggg ≥≥+

1
21

222 222 +=+≥+= hhhggg

17Winter term 07/08

Path compression during ‘find-set’ operations

e.find-set()
1 if e ≠ e.parent
2 then e.parent = e.parent.find-set()
3 return e.parent

18Winter term 07/08

Analysis of the running time

m total number of operations,

f of which are find-set operations and
n of which are make-set operations

at most n – 1 union operations

Union by size:
O(n + f log n)

find-set operation with path compression:
If f < n, Θ(n + f log n)
If f ≥ n, Θ(f log1 +f/n n)

19Winter term 07/08

Analysis of the running time

Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the
running time of m disjoint-set operations on n elements is

Θ(m * α (m,n)),

where α (m,n) is the inverse of Ackermann’s function.

20Winter term 07/08

Ackermann’s function and its inverse

Ackermann’s function

A(1,j) = 2j for j ≥ 1
A(i,1) = A(i – 1,2) for i ≥ 2
A(i,j) = A(i – 1, A(i, j - 1)) for i,j ≥ 2

inverse of Ackermann’s function

⎣ ⎦(){ }nnmiAinm log/,1min),(>≥=α

21Winter term 07/08

Ackermann’s function and its inverse

⎣ ⎦() ()
() ()
() () ()()
() () ()() ()

() 65536

655362

4

2

2log satisfying for ,4,

22

16,21,3,22,31,4
1621,2,12,21,3

422,11,2
1,/,

222

<≤

=≥

===
====

===
≥

nnnm

AAAAA
AAAA

AA
iAnmiA

α

