

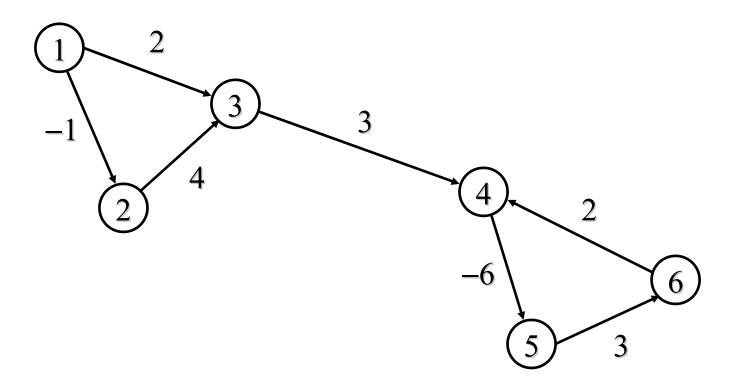
Algorithms Theory

11 - Shortest Paths

Prof. Dr. S. Albers

Directed graph G = (V, E)

Cost function $c: E \rightarrow R$



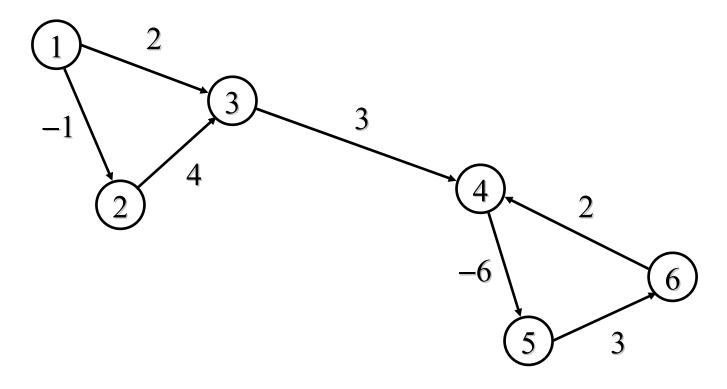
Cost of a path $P = v_0, v_1, \dots, v_l$ from u to v:

$$c(P) = \sum_{i=0}^{l-1} c(v_i, v_{i+1})$$

Distance between *u* and *v* (not always defined):

 $dist(v, w) = \inf \{ c(P) \mid P \text{ is a path from } u \text{ to } v \}$

Example



$$dist(1,2) =$$

$$dist(1,3) =$$

$$dist(3,4) =$$

2. Single-source shortest paths problem

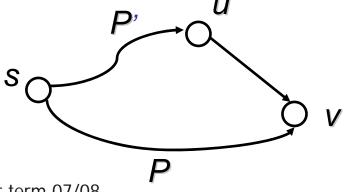
Input: network $G = (V, E, c), c : E \rightarrow R$, vertex s

Output: dist(s, v) for all $v \in V$

Observation: The function *dist* satisfies the triangle inequality.

For any edge $(u,v) \in E$:

$$dist(s,v) \leq dist(s,u) + c(u,v)$$



P =shortest path from s to v

P' =shortest path from s to u

1. Overestimate the function *dist*

$$dist(s,v) = \begin{cases} 0 & \text{if } v = s \\ \infty & \text{if } v \neq s \end{cases}$$

2. While there exists an edge e = (u, v) with

$$dist(s,v) > dist(s,u) + c(u,v)$$

set $dist(s,v) \leftarrow dist(s,u) + c(u,v)$

Generic algorithm


```
    DIST[s] ← 0;
    for all v ∈ V\{s} do DIST[v] ← ∞ endfor;
    while ∃ e = (u,v) ∈ E with DIST[v] > DIST[u] + c(u,v) do
    Choose such an edge e = (u,v);
    DIST[v] ← DIST[u] + c(u,v);
```

Questions:

6. endwhile;

- 1. How can we check in line 3 if the triangle inequality is violated?
- 2. Which edge shall we choose in line 4?

Solution

Maintain a set *U* of all those vertices that might have an outgoing edge violating the triangle inequality.

- Initialize $U = \{s\}$
- Add vertex *v* to *U* whenever DIST[*v*] decreases.

- 1. Check if the triangle inequality is violated: $U \neq \emptyset$?
- 2. Choose a vertex from *U* and restore the triangle inequality for all outgoing edges (relaxation).

Refined algorithm


```
1. DIST[s] \leftarrow 0;
2. for all v \in V \setminus \{s\} do DIST[v] \leftarrow \infty endfor;
3. U \leftarrow \{s\};
4. while U \neq \emptyset do
        Choose a vertex u \in U and delete it from U;
6.
         for all e = (u, v) \in E do
            if DIST[v] > DIST[u] + c(u,v) then
7.
                 DIST[v] \leftarrow DIST[u] + c(u,v);
8.
                 U \leftarrow U \cup \{v\};
9.
             endif;
10.
11.
         endfor;
12. endwhile;
```


10

Lemma 1: For each vertex $v \in V$ we have $DIST[v] \ge dist(s, v)$.

Proof: (by contradiction)

Let v be the first vertex for which the relaxation of an edge (u,v) yields DIST[v] < dist(s,v).

Then:

 $DIST[u] + c(u,v) = DIST[v] < dist(s,v) \le dist(s,u) + c(u,v)$

Important properties

Lemma 2:

- a) If $v \notin U$, then for all $(v, w) \in E$: DIST[w] \leq DIST[v] + c(v, w)
- b) Let $s = v_0$, v_1 , ..., $v_l = v$ be a shortest path from s to v. If DIST[v] > dist(s, v), then there exists v_i , $0 \le i \le l-1$, with $v_i \in U$ and DIST[v_i] = $dist(s, v_i)$.
- c) If G has no negative-cost cycles and DIST[v] > dist(s, v) for any $v \in V$, then there exists a $u \in U$ with DIST[u] = dist(s, u).
- d) If in line 5 we always choose $u \in U$ with DIST[u] = dist(s,u), then the while-loop is executed only once per vertex.

Efficient implementations

Line 5: How can we find a vertex $u \in U$ with DIST[u] = dist(s,u)?

This is not known in general, but for some important special cases.

- Nonnegative networks (only non-negative edge costs)
 Dijkstra's algorithm
- Networks without negative-cost cycles
 Bellman-Ford algorithm
- Acyclic networks

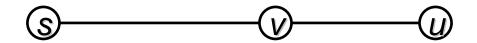
3. Non-negative networks

5'. Choose a vertex $u \in U$ with minimum DIST[u] and delete it from U.

Lemma 3: Using 5' we have DIST[u] = dist(s,u).

Proof: By Lemma 2b) there is a vertex $v \in U$ on the shortest path from s to u with DIST[v] = dist(s, v).

$$DIST[u] \leq DIST[v] = dist(s,v) \leq dist(s,u)$$



Implementing *U* as priority queue

The elements of the form (key, inf) are the pairs (DIST[v], v).

Empty(Q): Is Q empty?

Insert(Q, key, inf): Inserts (key,inf) into Q.

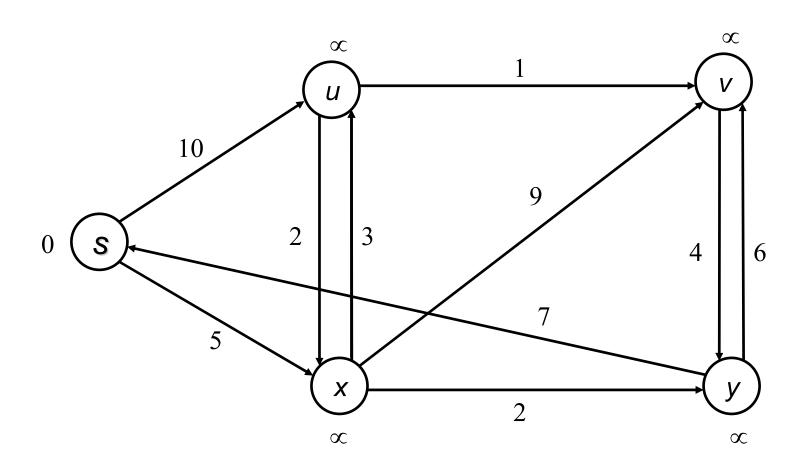
DeleteMin(Q): Returns the element with minimum key and deletes it from Q.

DecreaseKey(Q, element, j): Decreases the value of element's key to the new value j, provided that j is less than the former key.

Dijkstra's algorithm


```
1. DIST[s] \leftarrow 0; Insert(U, O, s);
2. for all v \in V \setminus \{s\} do DIST[v] \leftarrow \infty; Insert(U, \infty, v); endfor;
3. while \neg \text{Empty}(U) do
       (d,u) \leftarrow \text{DeleteMin}(U);
    for all e = (u, v) \in E do
           if DIST[v] > DIST[u] + c(u,v) then
6.
                  DIST[v] \leftarrow DIST[u] + c(u,v);
7.
                  DecreaseKey(U, v, DIST[v]);
8.
9.
           endif;
        endfor;
10.
11. endwhile;
```

Example



Running time

O(
$$n(T_{\text{Insert}} + T_{\text{Empty}} + T_{\text{DeleteMin}}) + mT_{\text{DecreaseKey}} + m + n)$$

Fibonacci heaps:

 T_{Insert} : O(1)

 $T_{\text{DeleteMin}}$: O(log n) amortized

 $T_{\text{DecreaseKey}}$: O(1) amortized

$$O(n \log n + m)$$

4. Networks without negative-cost cycles

Implement *U* as a queue.

Lemma 4: Each vertex *v* is inserted into *U* at most *n* times.

Proof: Suppose that DIST[v] > dist(s, v) and v is appended at U for the i-th time. Then, by Lemma 2c) there exists $u_i \in U$ with DIST[u_i] = $dist(s, u_i)$.

Vertex u_i is deleted from U before v and will never be appended at U again.

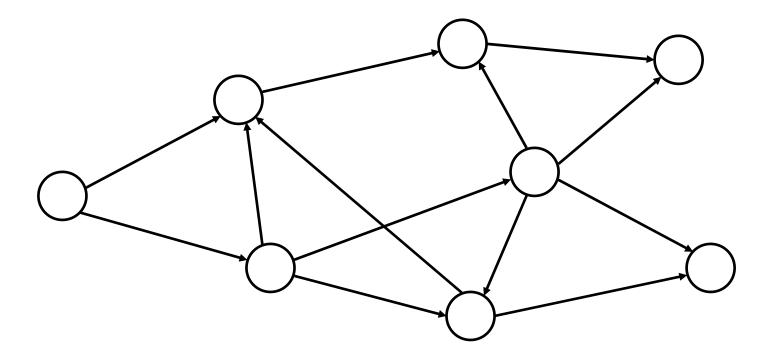
Vertices u_1 , u_2 , u_3 , ... are pairwise distinct.

Bellman-Ford algorithm


```
1. DIST[s] \leftarrow 0; A[s] \leftarrow 0;
2. for all v \in V \setminus \{s\} do DIST[v] \leftarrow \infty; A[v] \leftarrow 0; endfor;
3. U \leftarrow \{s\};
4. while U \neq \emptyset do
5.
        Choose the first vertex u in U and delete it from U; A[u] \leftarrow A[u]+1;
         if A[u] > n then return "negative-cost cycle";
6.
        for all e = (u, v) \in E do
7.
            if DIST[v] > DIST[u] + c(u,v) then
8.
                 DIST[v] \leftarrow DIST[u] + c(u,v);
9.
10.
                  U \leftarrow U \cup \{v\};
11.
             endif;
12.
         endfor;
13. endwhile;
```


Topological sorting: num: $V \rightarrow \{1, ..., n\}$

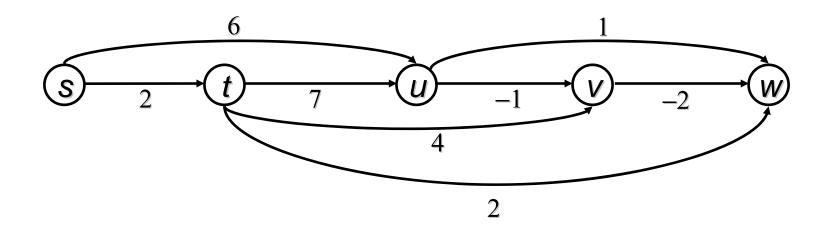
such that for all $(u,v) \in E$: num(u) < num(v)



Algorithm for acyclic graphs


```
1. Sort G = (V, E, c) topologically;
2. DIST[s] \leftarrow 0;
3. for all v \in V \setminus \{s\} do DIST[v] \leftarrow \infty; endfor;
4. U \leftarrow \{ v \mid v \in V \text{ with } \text{num}(v) < n \};
5. while U \neq \emptyset do
        Choose the vertex u \in U with minimum num;
    for all e = (u, v) \in E do
            if DIST[v] > DIST[u] + c(u,v) then
8.
                 DIST[v] \leftarrow DIST[u] + c(u,v);
10.
            endif;
11.
        endfor;
12. endwhile;
```

Example



Correctness

Lemma 5: When the *i*-th vertex u_i is deleted from U, then DIST[u_i] = $dist(s, u_i)$.

Proof: Induction on i.

i = 1: ok

i > 1: Let $s = v_1, v_2, \dots, v_l, v_{l+1} = u_i$ be a shortest path from s to u_i .

 v_{l} is deleted from U before u_{i} .

Then, by induction hypothesis: DIST[v_i] = $dist(s, v_i)$.

After (v_i, u_i) has been relaxed:

 $DIST[u_i] \leq DIST[v_i] + c(v_i, u_i) = dist(s, v_i) + c(v_i, u_i) = dist(s, u_i)$