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Algorithms Theory

12 – Minimum Spanning 
Trees

Prof. Dr. S. Albers
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1. Minimum spanning trees

G = (V, E)  undirected graph w: E → R weight function

Let T ⊆ E be a tree (connected, acyclic subgraph).
Total weight of T :
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Minimum spanning trees

A tree T ⊆ E that connects all vertices in V and whose total weight is
minimal is called a minimum spanning tree. 
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Growing a minimum spanning tree

Invariant: Maintain a set A ⊆ E that is a subset of some minimum
spanning tree. 

Definition: An edge (u,v) ∈ E \ A is a safe edge for A if A ∪ {(u,v)}
is also a subset of some minimum spanning tree.
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Greedy approach

Algorithm Generic-MST(G,w);
1.  A ←∅;
2.  while A does not form a spanning tree do
3.         Find an edge (u,v) that is safe for A;
4.          A ← A ∪ {(u,v)};
5.  endwhile;
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2. Cuts

A cut (S, V \ S) is a partition of V.  
An edge (u,v) crosses (S, V \ S) if one of its endpoints is in S and the
other is in V \ S.
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Cuts

A cut respects a set A of edges if no edge in A crosses the cut.
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Cuts

An edge is a light edge crossing a certain cut if its weight is the
minimum of any edge crossing the cut.
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3. Safe edges

Theorem: Let A be a subset of some minimum spanning tree T, and
let (S, V \ S) be a cut that respects A. If (u,v) is a light edge 
crossing (S, V \ S) then (u,v) is safe for A.

Proof:
Case 1: (u,v) ∈ T :  ok

Case 2: (u,v) ∉ T :
We construct another minimum spanning tree T’ with (u,v) ∈ T’
and A ⊆ T’.
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Safe edges

Adding (u,v) to T yields a cycle. 
On this cycle, there is at least one edge (x,y) in T that also crosses
the cut.
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Safe edges

T ’ = T \ {(x,y)}  ∪ {(u,v)}

is a minimum spanning tree, since

w(T ’) = w(T) - w(x,y) + w(u,v)  ≤ w(T)
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4. The graph GA

GA = (V, A)
is a forest, i.e. a collection of trees
at the beginning, when A = ∅, each tree consists of a single vertex
any safe edge for A connects distinct trees
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The graph GA

Corollary: Let B be a tree in GA = (V, A). If (u,v) is a light edge connecting 
B to some other tree in GA, then (u,v) is safe for A.

Proof: (B, V \ B) respects A and 
(u,v) is a light edge for this cut.
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5. Kruskal’s algorithm

Always choose an edge of smallest weight that connects
two trees B1 and B2 in GA.
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Kruskal’s algorithm

1.  A ←∅;
2. for all v ∈ V do Bv ← { v }; endfor;
3. Generate a list L of all edges in E, sorted in non-decreasing   

order of weight;
4. for all (u,v) in L do
5.        B1 ← FIND(u);  B2 ← FIND(v);
6.         if B1 ≠ B2 then
7. A ← A ∪ {(u,v)};    UNION (B1, B2);
8.         endif;
9. endfor;

Running time:    O( m α(m,n) + m + n log n ) 
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6. Prim’s algorithm

A is always a single tree. Start from an arbitrary root vertex r. In each 
step, add a light edge to A that connects A to a vertex in V \ A.
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Implementation

Q : priority queue containing all vertices v ∈ V \ A.
key of vertex v : minimum weight of any edge connecting v to a 

vertex in A (i.e. in the tree)

For a vertex v, let p[v] denote the parent of v in the tree.

A = { (v, p[v]) : v ∈ V – {r} – Q}
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Prim’s algorithm

1.  for all v ∈ V do Insert(Q,  ∞, v); endfor;
2. Choose a root vertex r ∈ V;
3.  DecreaseKey(Q, 0, r);  p[r] ← nil; 
4. while ¬Empty(Q) do
5.         (d, u) ← DeleteMin(Q);
6.         for all (u,v) ∈ E do
7.             if v ∈ Q  and w(u,v) < key of v then
8. DecreaseKey(Q, w(u,v), v);    p[v] ← u; 
9.             endif;

10. endfor;
11. endwhile;

Running time:    O( n log n + m )


