

Algorithms Theory

12 – Minimum Spanning Trees

Prof. Dr. S. Albers

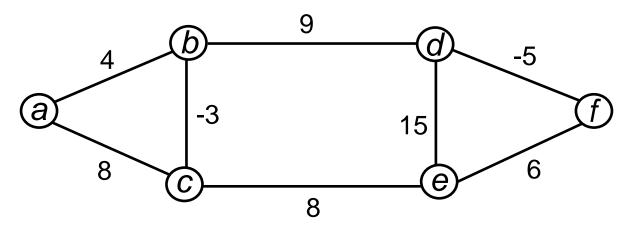
1. Minimum spanning trees

G = (V, E) undirected graph w: $E \rightarrow R$ weight function

Let $T \subseteq E$ be a tree (connected, acyclic subgraph).

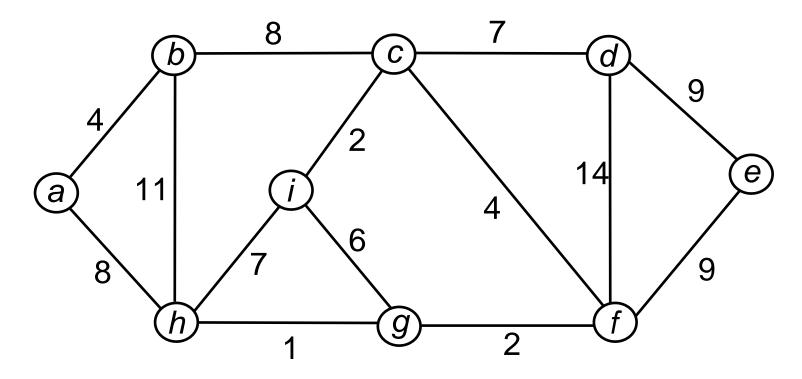
Total weight of *T*:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$



Minimum spanning trees

A tree $T \subseteq E$ that connects all vertices in V and whose total weight is minimal is called a minimum spanning tree.



Growing a minimum spanning tree

Invariant: Maintain a set $A \subseteq E$ that is a subset of some minimum spanning tree.

Definition: An edge $(u,v) \in E \setminus A$ is a safe edge for A if $A \cup \{(u,v)\}$ is also a subset of some minimum spanning tree.

Greedy approach

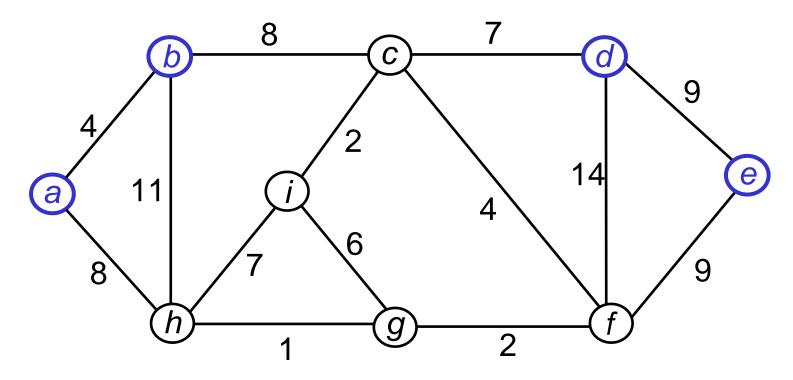
Algorithm Generic-MST(*G*, *w*);

- 1. $A \leftarrow \emptyset$;
- 2. while A does not form a spanning tree do
- 3. Find an edge (u, v) that is safe for A;
- 4. $A \leftarrow A \cup \{(u,v)\};$
- 5. endwhile;

2. Cuts

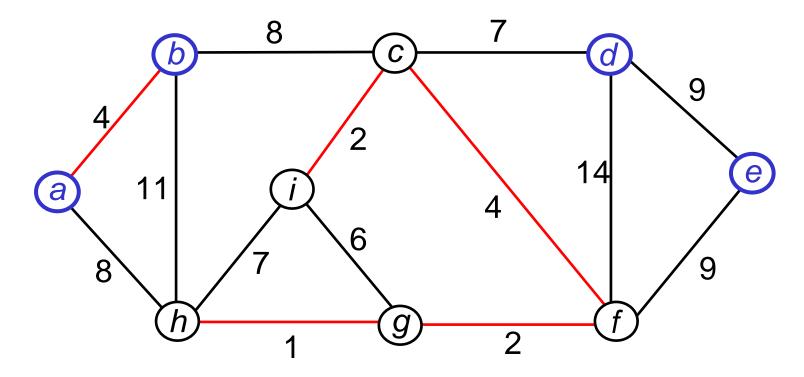
A cut $(S, V \setminus S)$ is a partition of V.

An edge (u,v) crosses $(S, V \setminus S)$ if one of its endpoints is in S and the other is in $V \setminus S$.



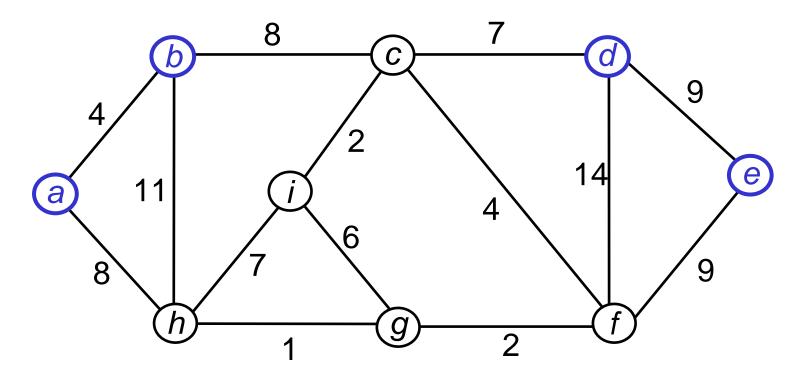
Cuts

A cut respects a set A of edges if no edge in A crosses the cut.



Cuts

An edge is a light edge crossing a certain cut if its weight is the minimum of any edge crossing the cut.



3. Safe edges

Theorem: Let A be a subset of some minimum spanning tree T, and let $(S, V \setminus S)$ be a cut that respects A. If (u, v) is a light edge crossing $(S, V \setminus S)$ then (u, v) is safe for A.

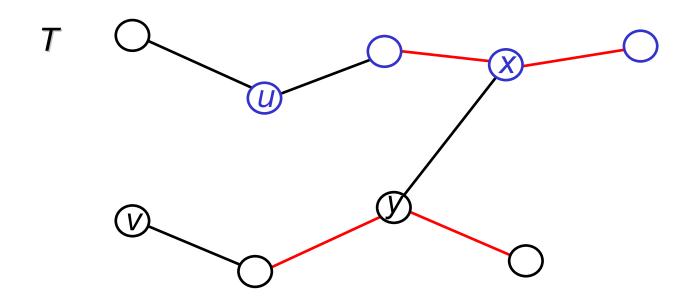
Proof:

Case 1: $(u,v) \in T$: ok

Case 2: $(u,v) \notin T$:

We construct another minimum spanning tree T' with $(u, v) \in T'$ and $A \subseteq T'$.

Safe edges



Adding (u, v) to T yields a cycle.

On this cycle, there is at least one edge (x,y) in T that also crosses the cut.

Safe edges

$$T' = T \setminus \{(x,y)\} \cup \{(u,v)\}$$

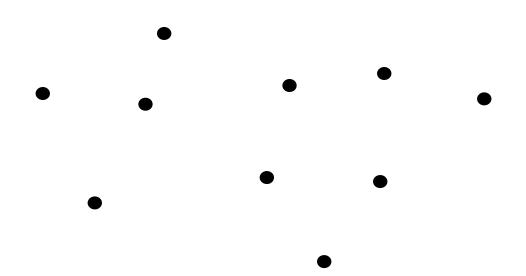
is a minimum spanning tree, since

$$w(T') = w(T) - w(x,y) + w(u,v) \leq w(T)$$

4. The graph G_A

$$G_A = (V, A)$$

- is a forest, i.e. a collection of trees
- at the beginning, when $A = \emptyset$, each tree consists of a single vertex
- any safe edge for A connects distinct trees



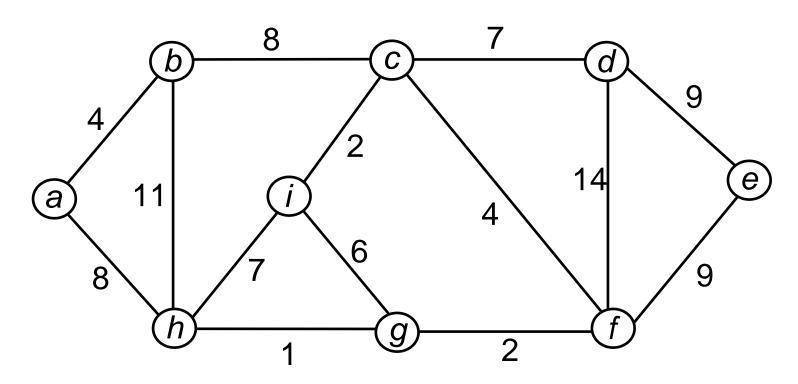
The graph G_A

Corollary: Let *B* be a tree in $G_A = (V, A)$. If (u, v) is a light edge connecting *B* to some other tree in G_A , then (u, v) is safe for *A*.

Proof: $(B, V \setminus B)$ respects A and (u,v) is a light edge for this cut.

5. Kruskal's algorithm

Always choose an edge of smallest weight that connects two trees B_1 and B_2 in G_A .

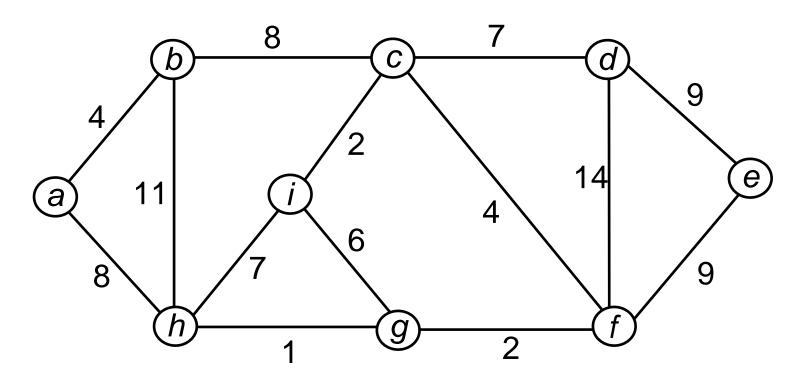


Kruskal's algorithm


```
    A ← Ø;
    for all v ∈ V do B<sub>v</sub> ← { v }; endfor;
    Generate a list L of all edges in E, sorted in non-decreasing order of weight;
    for all (u,v) in L do
    B<sub>1</sub> ← FIND(u); B<sub>2</sub> ← FIND(v);
    if B<sub>1</sub> ≠ B<sub>2</sub> then
    A ← A ∪ {(u,v)}; UNION (B<sub>1</sub>, B<sub>2</sub>);
    endif;
    endfor;
```

Running time: O($m \alpha(m,n) + m + n \log n$)

A is always a single tree. Start from an arbitrary root vertex r. In each step, add a light edge to A that connects A to a vertex in $V \setminus A$.



Implementation

Q : priority queue containing all vertices $v \in V \setminus A$.

key of vertex v: minimum weight of any edge connecting v to a vertex in A (i.e. in the tree)

For a vertex v, let p[v] denote the parent of v in the tree.

$$A = \{ (v, p[v]) : v \in V - \{r\} - Q \}$$

Prim's algorithm


```
1. for all v \in V do Insert(Q, \infty, v); endfor;
2. Choose a root vertex r \in V;
3. DecreaseKey(Q, 0, r); p[r] \leftarrow \text{nil};
4. while \neg \text{Empty}(Q) do
5. (d, u) \leftarrow \text{DeleteMin}(Q);
6. for all (u,v) \in E do
            if v \in Q and w(u,v) < \text{key of } v \text{ then}
               DecreaseKey(Q, w(u,v), v); p[v] \leftarrow u;
8.
9.
            endif;
10.
         endfor;
11. endwhile;
Running time: O(n \log n + m)
```