
Winter term 07/08

Algorithms Theory

12 – Minimum Spanning
Trees

Prof. Dr. S. Albers

2Winter term 07/08

1. Minimum spanning trees

G = (V, E) undirected graph w: E → R weight function

Let T ⊆ E be a tree (connected, acyclic subgraph).
Total weight of T :

∑
∈

=
Tvu

vuwTw
),(

),()(

4

8

-3

9

8

15

-5

6

a

ec

b d

f

3Winter term 07/08

Minimum spanning trees

A tree T ⊆ E that connects all vertices in V and whose total weight is
minimal is called a minimum spanning tree.

1

8

11

7

2

8 7

9

9

4

2

14

6

4

c

a

b

h

i

g f

e

d

4Winter term 07/08

Growing a minimum spanning tree

Invariant: Maintain a set A ⊆ E that is a subset of some minimum
spanning tree.

Definition: An edge (u,v) ∈ E \ A is a safe edge for A if A ∪ {(u,v)}
is also a subset of some minimum spanning tree.

5Winter term 07/08

Greedy approach

Algorithm Generic-MST(G,w);
1. A ←∅;
2. while A does not form a spanning tree do
3. Find an edge (u,v) that is safe for A;
4. A ← A ∪ {(u,v)};
5. endwhile;

6Winter term 07/08

2. Cuts

A cut (S, V \ S) is a partition of V.
An edge (u,v) crosses (S, V \ S) if one of its endpoints is in S and the
other is in V \ S.

i

1

8

11

7

2

8 7

9

9

4

2

14

6

4

f

a

h

b c d

e

g

7Winter term 07/08

Cuts

A cut respects a set A of edges if no edge in A crosses the cut.

1

8

11

7

2

8 7

9

9

4

2

14

6

4

a

b

h

c

i

g

d

f

e

8Winter term 07/08

Cuts

An edge is a light edge crossing a certain cut if its weight is the
minimum of any edge crossing the cut.

1

8

11

7

2

8 7

9

9

4

2

14

6

4

b

a

h

i

c

g f

e

d

9Winter term 07/08

3. Safe edges

Theorem: Let A be a subset of some minimum spanning tree T, and
let (S, V \ S) be a cut that respects A. If (u,v) is a light edge
crossing (S, V \ S) then (u,v) is safe for A.

Proof:
Case 1: (u,v) ∈ T : ok

Case 2: (u,v) ∉ T :
We construct another minimum spanning tree T’ with (u,v) ∈ T’
and A ⊆ T’.

10Winter term 07/08

Safe edges

Adding (u,v) to T yields a cycle.
On this cycle, there is at least one edge (x,y) in T that also crosses
the cut.

TT

v y

x
u

11Winter term 07/08

Safe edges

T ’ = T \ {(x,y)} ∪ {(u,v)}

is a minimum spanning tree, since

w(T ’) = w(T) - w(x,y) + w(u,v) ≤ w(T)

12Winter term 07/08

4. The graph GA

GA = (V, A)
is a forest, i.e. a collection of trees
at the beginning, when A = ∅, each tree consists of a single vertex
any safe edge for A connects distinct trees

13Winter term 07/08

The graph GA

Corollary: Let B be a tree in GA = (V, A). If (u,v) is a light edge connecting
B to some other tree in GA, then (u,v) is safe for A.

Proof: (B, V \ B) respects A and
(u,v) is a light edge for this cut.

14Winter term 07/08

5. Kruskal’s algorithm

Always choose an edge of smallest weight that connects
two trees B1 and B2 in GA.

1

8

11

7

2

8 7

9

9

4

2

14

6

4

b

a

h

i

c d

e

fg

15Winter term 07/08

Kruskal’s algorithm

1. A ←∅;
2. for all v ∈ V do Bv ← { v }; endfor;
3. Generate a list L of all edges in E, sorted in non-decreasing

order of weight;
4. for all (u,v) in L do
5. B1 ← FIND(u); B2 ← FIND(v);
6. if B1 ≠ B2 then
7. A ← A ∪ {(u,v)}; UNION (B1, B2);
8. endif;
9. endfor;

Running time: O(m α(m,n) + m + n log n)

16Winter term 07/08

6. Prim’s algorithm

A is always a single tree. Start from an arbitrary root vertex r. In each
step, add a light edge to A that connects A to a vertex in V \ A.

1

8

11

7

2

8 7

9

9

4

2

14

6

4

b

a

h

i

c

g f

d

e

17Winter term 07/08

Implementation

Q : priority queue containing all vertices v ∈ V \ A.
key of vertex v : minimum weight of any edge connecting v to a

vertex in A (i.e. in the tree)

For a vertex v, let p[v] denote the parent of v in the tree.

A = { (v, p[v]) : v ∈ V – {r} – Q}

18Winter term 07/08

Prim’s algorithm

1. for all v ∈ V do Insert(Q, ∞, v); endfor;
2. Choose a root vertex r ∈ V;
3. DecreaseKey(Q, 0, r); p[r] ← nil;
4. while ¬Empty(Q) do
5. (d, u) ← DeleteMin(Q);
6. for all (u,v) ∈ E do
7. if v ∈ Q and w(u,v) < key of v then
8. DecreaseKey(Q, w(u,v), v); p[v] ← u;
9. endif;

10. endfor;
11. endwhile;

Running time: O(n log n + m)

