
Winter term 07/08

Prof. Dr. S. Albers

Algorithms Theory

15 – Text Search (2)
Construction of suffix trees



2Winter term 07/08

Suffix tree

t = x a b x a $
1 2 3 4 5 6

x  a
b x a $
$

1

4

25
6

3 b x a $

a

$

$

$ a x 
b



3Winter term 07/08

Ukkonen’s algorithm: implicit suffix trees

Definition: An implicit suffix tree is a tree obtained from the
suffix tree for t$ by

(1)  deleting every copy of $ from the edge labels,

(2)  deleting edges that have no label,

(3)  deleting unary nodes.



4Winter term 07/08

Ukkonen’s algorithm: implicit suffix trees

t = x a b x a $
1 2 3 4 5 6

x  a
b x a $
$

1

4

25
6

3 b x a $

a

$

$

$ a x 
b



5Winter term 07/08

Ukkonen’s algorithm: implicit suffix trees

(1)  deleting $ from the edge labels

x  a
b x a 1

4

25
6

3 b x a 
a

a x 
b



6Winter term 07/08

Ukkonen’s algorithm: implicit suffix trees

(2) deleting edges that have no label

t = x a b x a $
1 2 3 4 5 6 x  a

b x a 1

2

3 b x a 
a

a x 
b



7Winter term 07/08

Ukkonen’s algorithm: implicit suffix trees

(3) deleting unary nodes

t = x a b x a $
1 2 3 4 5 6

x a b x a 
1

2

3

a b x a 
a x 

b



8Winter term 07/08

Ukkonen’s algorithm

Let t = t1t2t3 ... tm .

Ukk is an online algorithm: The suffix tree ST(t) is constructed step by
step by constructing a sequence of implicit suffix trees for the
prefixes of t: 

ST(ε), ST(t1), ST(t1t2), ..., ST(t1t2 ... tm)

ST(ε) is the empty implicit suffix tree, consisting of the root only.



9Winter term 07/08

Ukkonen’s algorithm

This is an online approach in the sense that in each step, the implicit
suffix tree for a prefix of t is created without knowledge of the rest of 
the input string t.

Since the algorithm reads the input string character by character from
left to right, it works incrementally.



10Winter term 07/08

Ukkonen’s algorithm

Incremental construction of an implicit suffix tree:

Induction basis: ST(ε) consists of the root only.

Induction step: ST(t1 .... ti) is extended to ST(t1 ... titi+1) for all i < m.

Let Ti be the implicit suffix tree for t[1...i].

• At first, we construct T1: This tree has a single edge labeled with
character t1.

• In phase i+1, we construct tree Ti+1 from Ti.
• We iterate for i = 1 … m–1.



11Winter term 07/08

Ukkonen’s algorithm

Pseudo code for Ukk:

Construct tree T1. 
for i = 1 to m–1 do
begin {phase i+1}

for j = 1 to i +1 do
begin {extension j}

In the current tree find the end of the path from the root
labeled t[j ... i]. If necessary, extend that path by adding
character t[i+1], thus ensuring that string t[j...i+1] is in the
tree. 

end;
end;



12Winter term 07/08

Ukkonen’s algorithm

t = a c c a $

a a  c

a  c  c

a  c c a

c c c

c
c a

a

1 1       2 1        2 1       3       2

step 1 step 2 step 3              step 4

T1 T2 T3 T4



13Winter term 07/08

Ukkonen’s algorithm

• In extension j of phase i+1, the end of the path from the root
labeled with substring t[j...i] is determined. Then, this substring is 
extended by adding the character t[i+1] to its end (unless t[i+1] 
already appears there). 

• In phase i+1, string t[1...i+1] is first inserted into the tree, followed by
strings t[2...i+1] , t[3...i+1] ,.... (in extensions 1,2,3,...., respectively).

• Extension i+1 of phase i+1 inserts the single character string t[i+1]
into the tree (unless it is already there).



14Winter term 07/08

Ukk: Suffix extension rules

Extension j (in phase i+1) results from applying one of the following rules:

Rule 1: If the path t [j...i] ends at a leaf, character t [i+1] is added to
the end of the label on that leaf edge.

Rule 2: If no path from the end of string t [j...i] starts with character t [i+1],
then a new leaf edge labeled with character t [i+1] is created. A new
internal node will also be created there if t [j...i]  ends inside an edge.
(This is the only extension that increases the number of leaves!
The new leaf represents the suffix starting at position j.)

Rule 3: If some path from the end of string t [j ...i] starts with character t [i+1],
then string t [j…i +1] is already in the current tree, so we do nothing. 



15Winter term 07/08

a  c c a
c c a

2

extend suffix 2
rule 1

Ukkonen’s algorithm

t = a c c a $
t [1...3] = acc
t [1...4] = acca

a  c c
c c

1       2

a  c c a
c c

1 
2

extend suffix 1
rule 1

t [1..4] = acca

1 

t [2..4] = cca

a  c c a

c

c a

a

1       3       2

t [3..4] = ca t [4..4] = a

a is already in 
the tree
rule 3

T3

a  c c a

c

c a

a

1       3       2

T4
extend suffix 3
rule 2



16Winter term 07/08

Ukkonen’s algorithm

During phase i+1 (when Ti+1 is constructed from Ti) the following holds:

(1) If rule 3 applies in extension j, then the path labeled t [j...i] in Ti must
continue with character t [i+1]. So, any path labeled t [j´... i] for j´≥ j
also continues with character t [i+1].

Therefore, rule 3 again applies in extensions j´= j+1,..., i+1.
Once rule 3 applies in an extension of phase i+1, this phase may

be ended.



17Winter term 07/08

Ukkonen’s algorithm

(2) If a leaf is created in Ti, then it will remain a leaf in all successive
trees Ti´ for i´> i (once a leaf, always a leaf!).
Reason: A leaf edge is never extended beyond its

current leaf.

a  c c a

c

c a

a

1       3       2

T4

t = a c c a b a a c b a ….



18Winter term 07/08

Ukkonen’s algorithm

Implication:
• Leaf 1 is created in phase 1. In each phase i+1 there is an initial

sequence of successive extensions (starting with extension 1) where
rule 1 or 2 applies.

• Let ji denote the last extension in this sequence of phase i.
Then:   ji ≤ ji+1



19Winter term 07/08

Ukkonen’s algorithm

Extensions according to rule 1 may be performed implicitly!



20Winter term 07/08

Ukkonen’s algorithm

Improving the algorithm:

In phase i+1, rule 1 applies in all extensions j for j ∈ [1, ji].
Only constant time is required to do those extensions implicitly.

If j ∈ [ji +1, i+1], then find the end of the path labeled t[j ... i] and
extend it by character t[i+1] according to rules 2 or 3.
If rule 3 applies, set ji+1 = j -1 and end phase i+1.  



21Winter term 07/08

Ukkonen’s algorithm

Example:

phase 1: compute extensions 1 ...  j1
phase 2: compute extensions j1 +1 ...  j2
phase 3: compute extensions j2 +1 ...  j3
....
phase i-1: compute extensions ji-2 +1 ... ji-1
phase i:     compute extensions ji-1 +1 ... ji



22Winter term 07/08

Ukkonen’s algorithm

• As long as explicit extensions are performed, keep track of the
index j* of the current explicit extension.

• During the execution of the algorithm, j* never decreases.

• As there are only m phases (where m = |t|) and j* is bounded
by m, the algorithm performs only m explicit extensions.



23Winter term 07/08

Ukkonen’s algorithm
Extended pseudo code for Ukk:

Construct tree T1;  j1 = 1;
for i = 1 to m – 1 do
begin {phase i+1}

Do all implicit extensions.
for j = ji +1 to i +1 do

begin {extension j}
In the current tree find the end of the path from the root labeled
t[j ... i]. If necessary, extend that path by adding character
t[i+1], thus ensuring that string t[j...i+1] is in the tree.
ji+1 := j; 
if rule 3 was applied then ji+1 := j – 1 and phase i+1 ends;
end;

end;



24Winter term 07/08

u

pup

*upuupu

*cupucupcuc

pcupupcuppcu*pcp

upcupuupcupupcuupc*upu

cupcupucupcupcupcucupccupcu*c

ucupcupuucupcupucupcuucupcucupucuuc*u

pucupcupupucupcuppucupcupucupcpucuppucupucpu*pε

987 6543210i:

Ukkonen’s algorithm
t = pucupcupu

• Suffixes that cause an extension
according to rule 2 are marked with *.

• Underlined suffixes indicate the last 
extension where rule 2 applies.

• Suffixes that end a phase (the first time
rule 3 applies) are colored blue.



25Winter term 07/08

Ukkonen’s algorithm

The running time may be improved using suffix links.

Definition: Let x? be an arbitrary string where x is a single character
and ? some (possibly empty) substring.
For an internal node v with edge labels x? the following holds:

If there exists a node s(v) with edge label ?, then there
is a pointer from v to s(v) which is called a suffix link.

?

?
x

s(v)

v



26Winter term 07/08

Ukkonen’s algorithm

?

?
x

s(v)

v

Idea:
By following the suffix links, we do not have to start each search for a 
split point at the root node. Instead, we can use the suffix links in 
order to determine these nodes more efficiently, i.e. in constant
amortized time.



27Winter term 07/08

Ukkonen’s algorithm

• Using suffix links, extension rules 2 and 3 can be applied more
efficiently. 

• Any explicit extension takes amortized O(1) time (not shown here).

• Since there are only m explicit extensions, the total running time of 
Ukkonen’s algorithm is O(m) (where m = |t|).



28Winter term 07/08

Ukkonen’s algorithm

The true suffix tree:

The final implicit suffix tree Tm can be converted to a true suffix tree in 
O(m) time.

(1)  Add a terminal symbol $ to the end of t.

(2)  Let Ukkonen’s algorithm continue with this character.

The resulting tree is the true suffix tree where no suffix is prefix of 
another suffix and where each suffix ends at a leaf.


