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Text search

Various scenarios:

Dynamic texts
• Text editors
• Symbol manipulators

Static texts
• Literature databases
• Library systems
• Gene databases
• World Wide Web
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Text search

Data type string:
• array of character
• file of character
• list of character

Operations (let T, P be of type string)
length: length ()
i-th character :    T [i]
concatenation:   cat (T, P)  T.P
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Problem definition

Given:
text       t1 t2 .... tn ∈ Σn

pattern p1p2 ... pm ∈ Σm

Goal:
Find one or all occurrences of the pattern in the text,
i.e. positions i (0 ≤ i ≤ n – m) such that

p1 =  ti+1

p2 =  ti+2

pm = ti+m

...
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Problem definition

text:   t1 t2 ....            ti+1 ....           ti+m ….. tn

pattern: p1 ....            pm

Running time:

1. # possible alignments: n – m + 1,   # pattern positions: m
O(n m)

2.   At least 1 comparison per m consecutive text positions:
Ω ( m + n/m )

i       i+1                      i+m
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Naive method

For each possible position 0 ≤ i ≤ n – m, check at most m character pairs.
Whenever a mismatch occurs, shift to the next position.

textsearchbf := proc (T : : string, P : : string)
# Input:      text T, pattern P
# Output:   list L of positions i, at which P occurs in T

n := length (T); m := length (P);
L := [ ];
for i from 0 to n - m do

j := 1;
while j ≤ m and T [ i + j ] = P [ j ]

do j := j +1 od;
if j = m +1 then L := [ L [ ] , i ] fi;

od;
RETURN (L)

end;
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Naive method

Running time:

0  0  ...                 0   ...   0  ...   0  0   ...
0   ...   0  ...   0  1

Worst case: Ω(m n)

In practice, a mismatch usually occurs very early.

running time ~ c n

i
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The Knuth-Morris-Pratt algorithm (KMP)

Let ti and pj+1 be the characters to be compared:

t1 t2 ...               ...              ti ...              ...
=   =  =    =      ≠
p1 ...      pj pj+1 ...     pm

If, for a certain alignment, the first mismatch occurs for characters
ti and pj+1, then:

• the last j characters compared in T equal the first j characters of P
• ti ≠ pj+1 
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The Knuth-Morris-Pratt algorithm (KMP)

Idea:

Find j´ = next [ j ] < j such that ti can then be compared to pj´+1.

Find greatest j´< j such that P1...j´ = Pj-j´+1...j.

Find the longest prefix of P that is a proper suffix of P 1 ... j .

t1 t2 ...               ...              ti ...              ...
=   =  =    =      ≠
p1 ...      pj pj+1 ...     pm
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The Knuth-Morris-Pratt algorithm (KMP)

Example for determining next [ j ]:

t1 t2 ... 01011   01011   0              ...
01011   01011   1

01011   01011   1

next [ j ] = length of the longest prefix of P that is a proper suffix of P1 ...j
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The Knuth-Morris-Pratt algorithm (KMP)

⇒ for P = 0101101011, next = [0,0,1,2,0,1,2,3,4,5] :

1010

11010

010

10

0

10

0

1101011010

10987654321
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The Knuth-Morris-Pratt algorithm (KMP)
KMP := proc (T : : string, P : : string)
# Input:     text T, pattern P
# Output:  list L of positions i at which P occurs in T

n := length(T);   m := length(P);
L :=  [ ];  next := KMPnext(P);
j :=  0;
for i from 1 to n do

while j > 0 and T [ i ] <> P [ j+1 ] do j := next [ j ] od;
if T [ i ]  = P [ j+1 ]  then j := j+1 fi;
if j = m then L := [ L[ ] , i-m ] ;

j := next [ j ]
fi;

od;
RETURN (L);

end;
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The Knuth-Morris-Pratt algorithm (KMP)

Pattern: abrakadabra, next = [0,0,0,1,0,1,0,1,2,3,4]

a  b  r  a  k  a  d  a  b  r  a  b  r  a  b  a  b  r  a  k  ...
|   |   |   |   |   |   |   |   |   |   | 
a  b  r  a  k  a  d  a  b  r  a

next [11] = 4

a  b  r  a  k  a  d  a  b  r  a  b  r  a  b  a  b  r  a  k  ...
- - - - | 
a  b  r  a  k
next [4] = 1
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The Knuth-Morris-Pratt algorithm (KMP)

a  b  r  a  k  a  d  a  b  r  a  b  r  a  b  a  b  r  a  k  ...
- |   |   |   |
a  b  r  a  k
next [4] = 1

a  b  r  a  k  a  d  a  b  r  a  b  r  a  b  a  b  r  a  k  ...
- |   |
a  b  r  a  k
next [2] = 0

a  b  r  a  k  a  d  a  b  r  a  b  r  a  b  a  b  r  a  k  ...
|   |   |   |   |
a  b  r  a  k
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The Knuth-Morris-Pratt algorithm (KMP)

Correctness:

When starting the for-loop:
P1...j = Ti-j...i-1 and j ≠ m

if j = 0: we are located at the first character of P
if j ≠ 0: P can be shifted while j > 0 and ti ≠ pj+1

t1 t2 ...               ...               ti ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      ≠
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The Knuth-Morris-Pratt algorithm (KMP)

If T [ i ] = P [ j+1 ],  j and i can be increased (at the end of the loop).

If P has been compared completely (j = m), an occurrence of P in T
has been found and we can shift to the next position.
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The Knuth-Morris-Pratt algorithm (KMP)

Running time:

• the text pointer i is never reset
• text pointer i and pattern pointer j are always incremented together
• always: next [ j ] < j;

j can be decreased only as many times as it has been increased

If the next-array is known, the KMP algorithm runs in O(n) time.
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Computation of the next-array

next [i] = length of the longest prefix of P that is a
proper suffix of P1...i

next [1] = 0
Let next [i-1] = j :

p1 p2 ...               ...               pi ...              ...

p1 ...      pj pj+1 ...     pm

=   =  =    =      ≠
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Computation of the next-array

Consider two cases:

1) pi = pj+1 next [ i ] = j + 1 

2) pi ≠ pj+1 replace j by next [ j ] until pi = pj+1 or j = 0
If pi = pj+1, set next [ i ] = j + 1, otherwise next [ i ] = 0. 
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Computation of the next-array

KMPnext := proc (P : : string)
# Input:     pattern P
# Output:  next-array for P

m := length (P);
next := array (1.. m);
next [1] := 0;
j := 0;
for i from 2 to m do

while j > 0 and P [ i ] <> P [ j+1 ]
do j := next [ j ] od;

if P [ i ] = P [ j+1 ] then j := j+1 fi;
next [ i ] := j

od;
RETURN (next);

end;



21Winter term 07/08

Running time of KMP

The KMP algorithmus runs in O(n + m) time.

Can text search be realized even faster?
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The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan the
characters from right to left rather than from left to right.

Example:

h e    s a i d    a b r a k a d a b r a    b u t 
|

b u t

h e    s a i d    a b r a k a d a b r a    b u t 
|

b u t
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The Boyer-Moore algorithm (BM)

h e    s a i d    a b r a k a d a b r a    b u t
|

b u t 

h e    s a i d    a b r a k a d a b r a    b u t
|

b u t

h e    s a i d    a b r a k a d a b r a    b u t 
|

b u t 
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The Boyer-Moore algorithm (BM)
h e    s a i d    a b r a k a d a b r a    b u t 

|
b u t 

h e    s a i d    a b r a k a d a b r a    b u t 
|

b u t 

h e    s a i d    a b r a k a d a b r a    b u t 
|

b u t 

h e    s a i d    a b r a k a d a b r a    b u t 
|  |  |
b u t 

Large jumps:
few comparisons

Desired running time:
O(m + n /m)
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BM: last-occurrence function

For c ∈ Σ and the pattern P let

δ [c] := index of the right-most occurrence of c in P

= max {j | pj = c}

= 

What is the cost for computing all δ-values?
Let |Σ| = l: 

⎩
⎨
⎧

≤<≠=
∉

mkjpc pc j
 Pc 

k j for   and  if
 if0
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BM: last-occurrence function

Let

c = the character causing the mismatch
j = the index of the current character in the pattern (c ≠ pj)
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BM: last-occurrence function

Computation of the pattern shift

Case 1  c does not occur in P  (δ[c] = 0)
Shift the pattern j characters to the right.

text                              c

pattern

i + 1 i + j       i + m

pj

|  |  |

pm

ji =Δ ][
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BM: last-occurrence function

Case 2 c occurs in the pattern (δ[c] ≠ 0)
Shift the pattern to the right until the rightmost c in the pattern is
aligned with a potential c in the text.

text

pattern

i + 1 i + j      i + m

c            pj

|   |   |

c                   

k

c

pm
j - k
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BM: last-occurrence function

Case 2 a: δ[c] > j

text

pattern

Shift the rightmost c in the pattern to a potential c in the text.

c            c

pj c

1δ[c]mΔ[i]by shift +−=⇒

4444 34444 21
(c)

                                
δ no c
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BM: last-occurrence function

Case 2 b: δ[c] < j

text

pattern

Shift the rightmost c in the pattern to c in the text.

c

c pj
4342143421
)((c)

                        
cj δδ −

δ[c]jΔ[i]by shift −=⇒
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BM: Algorithm (version 1)

Algorithm BM-search1
Input: text T, pattern P
Output: all positions of P in T
1  n := length(T); m := length(P)
2  compute δ
3  i := 0
4  while i ≤ n – m do
5      j := m
6       while j > 0 and P [ j ] = T [ i + j ] do
7 j := j – 1

end while;
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BM: Algorithm (version 1)

8 if j = 0
9      then output position i
10 i := i + 1
11 else if δ[ T[i + j] ] > j
12 then i := i + m + 1 - δ[ T[i + j] ]
13 else i := i + j - δ[ T[i + j] ]
14  end while; 
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BM: Algorithm (version 1)

Analysis:

Desired running time:   O(m + n/m)
Worst-case running time:     Ω(n m)

i

0  0  ...                     0  0    ...   0   ...   0  ...

1  0     ...   0   ...   0
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Match heuristic

Use the information collected before a mismatches pj ≠ ti + j occurs.

gsf[j] = position of the end of the next occurrence of the suffix
Pj+1 ... m from the right that is not preceded by character Pj

(good suffix function)

Possible shift: γ[j] = m – gsf[j]

p1 ...      pj ...     pm
i

t1 t2 ...              ti+1 ...      ti+j ...    ti+m

≠ =  =   =  
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Example of computing gsf

gsf[j] = position of the end of the closest occurrence of the suffix
Pj+1 ... m from the right that is not preceded by character Pj

pattern: banana

0bananabananagsf[1]

0bananaananagsf[2]

4bananananagsf[3]

0*** bana naanagsf[4]

2banananagsf[5]
position

further
occurrence

forbidden
character

inspected
suffixgsf[j]
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Example of computing gsf

gsf (banana) = [0,0,0,4,0,2]

a b a a b a b a n a n a n a n a 
≠ = = =

b a n a n a
b a n a n a 

⇒
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BM: Algorithm (version 2)

Algorithm BM-search2
Input: text T, pattern P
Output: shift for all occurrences of P in T
1  n := length(T); m := length(P)
2  compute δ and γ
3  i := 0
4  while i ≤ n – m do
5  j := m
6 while j > 0 and P [ j ] = T [ i + j ] do
7 j := j – 1

end while;
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BM: Algorithm (version 2)

8       if j = 0
9 then output position i
10 i := i + γ [ 0 ]
11 else i := i + max( γ [ j ],  j - δ[ T [i + j] ] )
12  end while;


