
Winter term 07/08

Prof. Dr. S. Albers

Algorithms Theory

15 – Text search (3)

2Winter term 07/08

Text search

Various scenarios:

Dynamic texts
• Text editors
• Symbol manipulators

Static texts
• Literature databases
• Library systems
• Gene databases
• World Wide Web

3Winter term 07/08

Text search

Data type string:
• array of character
• file of character
• list of character

Operations (let T, P be of type string)
length: length ()
i-th character : T [i]
concatenation: cat (T, P) T.P

4Winter term 07/08

Problem definition

Given:
text t1 t2 tn ∈ Σn

pattern p1p2 ... pm ∈ Σm

Goal:
Find one or all occurrences of the pattern in the text,
i.e. positions i (0 ≤ i ≤ n – m) such that

p1 = ti+1

p2 = ti+2

pm = ti+m

...

5Winter term 07/08

Problem definition

text: t1 t2 ti+1 ti+m ….. tn

pattern: p1 pm

Running time:

1. # possible alignments: n – m + 1, # pattern positions: m
O(n m)

2. At least 1 comparison per m consecutive text positions:
Ω (m + n/m)

i i+1 i+m

6Winter term 07/08

Naive method

For each possible position 0 ≤ i ≤ n – m, check at most m character pairs.
Whenever a mismatch occurs, shift to the next position.

textsearchbf := proc (T : : string, P : : string)
Input: text T, pattern P
Output: list L of positions i, at which P occurs in T

n := length (T); m := length (P);
L := [];
for i from 0 to n - m do

j := 1;
while j ≤ m and T [i + j] = P [j]

do j := j +1 od;
if j = m +1 then L := [L [] , i] fi;

od;
RETURN (L)

end;

7Winter term 07/08

Naive method

Running time:

0 0 ... 0 ... 0 ... 0 0 ...
0 ... 0 ... 0 1

Worst case: Ω(m n)

In practice, a mismatch usually occurs very early.

running time ~ c n

i

8Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Let ti and pj+1 be the characters to be compared:

t1 t2 ti
= = = = ≠
p1 ... pj pj+1 ... pm

If, for a certain alignment, the first mismatch occurs for characters
ti and pj+1, then:

• the last j characters compared in T equal the first j characters of P
• ti ≠ pj+1

9Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Idea:

Find j´ = next [j] < j such that ti can then be compared to pj´+1.

Find greatest j´< j such that P1...j´ = Pj-j´+1...j.

Find the longest prefix of P that is a proper suffix of P 1 ... j .

t1 t2 ti
= = = = ≠
p1 ... pj pj+1 ... pm

10Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Example for determining next [j]:

t1 t2 ... 01011 01011 0 ...
01011 01011 1

01011 01011 1

next [j] = length of the longest prefix of P that is a proper suffix of P1 ...j

11Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

⇒ for P = 0101101011, next = [0,0,1,2,0,1,2,3,4,5] :

1010

11010

010

10

0

10

0

1101011010

10987654321

12Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)
KMP := proc (T : : string, P : : string)
Input: text T, pattern P
Output: list L of positions i at which P occurs in T

n := length(T); m := length(P);
L := []; next := KMPnext(P);
j := 0;
for i from 1 to n do

while j > 0 and T [i] <> P [j+1] do j := next [j] od;
if T [i] = P [j+1] then j := j+1 fi;
if j = m then L := [L[] , i-m] ;

j := next [j]
fi;

od;
RETURN (L);

end;

13Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Pattern: abrakadabra, next = [0,0,0,1,0,1,0,1,2,3,4]

a b r a k a d a b r a b r a b a b r a k ...
| | | | | | | | | | |
a b r a k a d a b r a

next [11] = 4

a b r a k a d a b r a b r a b a b r a k ...
- - - - |
a b r a k
next [4] = 1

14Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

a b r a k a d a b r a b r a b a b r a k ...
- | | | |
a b r a k
next [4] = 1

a b r a k a d a b r a b r a b a b r a k ...
- | |
a b r a k
next [2] = 0

a b r a k a d a b r a b r a b a b r a k ...
| | | | |
a b r a k

15Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Correctness:

When starting the for-loop:
P1...j = Ti-j...i-1 and j ≠ m

if j = 0: we are located at the first character of P
if j ≠ 0: P can be shifted while j > 0 and ti ≠ pj+1

t1 t2 ti

p1 ... pj pj+1 ... pm

= = = = ≠

16Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

If T [i] = P [j+1], j and i can be increased (at the end of the loop).

If P has been compared completely (j = m), an occurrence of P in T
has been found and we can shift to the next position.

17Winter term 07/08

The Knuth-Morris-Pratt algorithm (KMP)

Running time:

• the text pointer i is never reset
• text pointer i and pattern pointer j are always incremented together
• always: next [j] < j;

j can be decreased only as many times as it has been increased

If the next-array is known, the KMP algorithm runs in O(n) time.

18Winter term 07/08

Computation of the next-array

next [i] = length of the longest prefix of P that is a
proper suffix of P1...i

next [1] = 0
Let next [i-1] = j :

p1 p2 pi

p1 ... pj pj+1 ... pm

= = = = ≠

19Winter term 07/08

Computation of the next-array

Consider two cases:

1) pi = pj+1 next [i] = j + 1

2) pi ≠ pj+1 replace j by next [j] until pi = pj+1 or j = 0
If pi = pj+1, set next [i] = j + 1, otherwise next [i] = 0.

20Winter term 07/08

Computation of the next-array

KMPnext := proc (P : : string)
Input: pattern P
Output: next-array for P

m := length (P);
next := array (1.. m);
next [1] := 0;
j := 0;
for i from 2 to m do

while j > 0 and P [i] <> P [j+1]
do j := next [j] od;

if P [i] = P [j+1] then j := j+1 fi;
next [i] := j

od;
RETURN (next);

end;

21Winter term 07/08

Running time of KMP

The KMP algorithmus runs in O(n + m) time.

Can text search be realized even faster?

22Winter term 07/08

The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan the
characters from right to left rather than from left to right.

Example:

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

23Winter term 07/08

The Boyer-Moore algorithm (BM)

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

24Winter term 07/08

The Boyer-Moore algorithm (BM)
h e s a i d a b r a k a d a b r a b u t

|
b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
| | |
b u t

Large jumps:
few comparisons

Desired running time:
O(m + n /m)

25Winter term 07/08

BM: last-occurrence function

For c ∈ Σ and the pattern P let

δ [c] := index of the right-most occurrence of c in P

= max {j | pj = c}

=

What is the cost for computing all δ-values?
Let |Σ| = l:

⎩
⎨
⎧

≤<≠=
∉

mkjpc pc j
 Pc

k j for and if
 if0

26Winter term 07/08

BM: last-occurrence function

Let

c = the character causing the mismatch
j = the index of the current character in the pattern (c ≠ pj)

27Winter term 07/08

BM: last-occurrence function

Computation of the pattern shift

Case 1 c does not occur in P (δ[c] = 0)
Shift the pattern j characters to the right.

text c

pattern

i + 1 i + j i + m

pj

| | |

pm

ji =Δ][

28Winter term 07/08

BM: last-occurrence function

Case 2 c occurs in the pattern (δ[c] ≠ 0)
Shift the pattern to the right until the rightmost c in the pattern is
aligned with a potential c in the text.

text

pattern

i + 1 i + j i + m

c pj

| | |

c

k

c

pm
j - k

29Winter term 07/08

BM: last-occurrence function

Case 2 a: δ[c] > j

text

pattern

Shift the rightmost c in the pattern to a potential c in the text.

c c

pj c

1δ[c]mΔ[i]by shift +−=⇒

4444 34444 21
(c)

δ no c

30Winter term 07/08

BM: last-occurrence function

Case 2 b: δ[c] < j

text

pattern

Shift the rightmost c in the pattern to c in the text.

c

c pj
4342143421
)((c)

cj δδ −

δ[c]jΔ[i]by shift −=⇒

31Winter term 07/08

BM: Algorithm (version 1)

Algorithm BM-search1
Input: text T, pattern P
Output: all positions of P in T
1 n := length(T); m := length(P)
2 compute δ
3 i := 0
4 while i ≤ n – m do
5 j := m
6 while j > 0 and P [j] = T [i + j] do
7 j := j – 1

end while;

32Winter term 07/08

BM: Algorithm (version 1)

8 if j = 0
9 then output position i
10 i := i + 1
11 else if δ[T[i + j]] > j
12 then i := i + m + 1 - δ[T[i + j]]
13 else i := i + j - δ[T[i + j]]
14 end while;

33Winter term 07/08

BM: Algorithm (version 1)

Analysis:

Desired running time: O(m + n/m)
Worst-case running time: Ω(n m)

i

0 0 ... 0 0 ... 0 ... 0 ...

1 0 ... 0 ... 0

34Winter term 07/08

Match heuristic

Use the information collected before a mismatches pj ≠ ti + j occurs.

gsf[j] = position of the end of the next occurrence of the suffix
Pj+1 ... m from the right that is not preceded by character Pj

(good suffix function)

Possible shift: γ[j] = m – gsf[j]

p1 ... pj ... pm
i

t1 t2 ... ti+1 ... ti+j ... ti+m

≠ = = =

35Winter term 07/08

Example of computing gsf

gsf[j] = position of the end of the closest occurrence of the suffix
Pj+1 ... m from the right that is not preceded by character Pj

pattern: banana

0bananabananagsf[1]

0bananaananagsf[2]

4bananananagsf[3]

0*** bana naanagsf[4]

2banananagsf[5]
position

further
occurrence

forbidden
character

inspected
suffixgsf[j]

36Winter term 07/08

Example of computing gsf

gsf (banana) = [0,0,0,4,0,2]

a b a a b a b a n a n a n a n a
≠ = = =

b a n a n a
b a n a n a

⇒

37Winter term 07/08

BM: Algorithm (version 2)

Algorithm BM-search2
Input: text T, pattern P
Output: shift for all occurrences of P in T
1 n := length(T); m := length(P)
2 compute δ and γ
3 i := 0
4 while i ≤ n – m do
5 j := m
6 while j > 0 and P [j] = T [i + j] do
7 j := j – 1

end while;

38Winter term 07/08

BM: Algorithm (version 2)

8 if j = 0
9 then output position i
10 i := i + γ [0]
11 else i := i + max(γ [j], j - δ[T [i + j]])
12 end while;

