Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. Susanne Albers Dr. Alexander Souza Fabian Schiller

Second Assignment Selected Topics in Efficient Algorithms

To be returned in the lectures on November 20th, 2007.

Exercise 1: Consider the paging problem. Assume that the size of the fast memory is h for the optimal offline algorithm but k for the online algorithm $(h \le k)$. Here the online algorithm has some advantage in terms of additional memory.

- 1. Show that for every deterministic c-competitive online algorithm $c \geq \frac{k}{k-h+1}$ holds.
- 2. Show that FIFO achieves a competitive ratio of $\frac{k}{k-h+1}$.

Exercise 2: Assume you are standing on the ground level of a stairway with n steps. In every round you can either go *one* step up (if you are not on top yet) or go down *all* steps. Stepping one step up or down takes you one unit of time. Answer the following two questions and prove the correctness of answer two via a potential function argument.

- 1. What is the largest possible time needed for one round?
- 2. How much time do you need amortized to run through a sequence of k rounds beginning on the ground level of the stairway?

Exercise 3: In the lectures three kinds of adversaries were defined. Show informally, that for any algorithm ALG it holds

$$\overline{R}_{\text{oblivious}}(\text{ALG}) \leq \overline{R}_{\text{adaptive online}}(\text{ALG}) \leq \overline{R}_{\text{adaptive offline}}(\text{ALG})$$

where $\overline{R}_{ADV}(ALG)$ is the infimum over all numbers c such that ALG is c-competitive against the adversary ADV.

Exercise 4: Transform the word **argara** via the Burrows-Wheeler transformation and retransform it again. Do this in a fashion that your proceeding is traceable. Give a pseudocode implementation for the *retransformation* of Burrows-Wheeler.

Please visit the following link frequently for ongoing information:

http://www.informatik.uni-freiburg.de/~ipr/ipr_teaching/ws07_08/selected_topics.html