Freiburg i. Br., January 29th, 2008 Winter Term 07/08

Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. Susanne Albers Dr. Alexander Souza Fabian Schiller

Seventh Assignment Selected Topics in Efficient Algorithms

To be returned in the exercises on February 12th, 2007.

Exercise 1: Let the following LP (I) in canonical form be given:

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$

The goal of this exercise is to find a feasible solution for this LP.

- 1) Construct another LP (II) in canonical form with the following properties:
 - a) The LP (I) is feasible, if and only if LP (II) has optimum value equal to zero.
 - b) From any optimum solution of LP (II) a feasible solution of LP (I) can be read off.
 - c) A feasible solution for LP (II) is easily seen.
- 2) In terms of computational complexity, what is more difficult: optimizing an LP or finding a feasible solution? Justify your answer.

Exercise 2: Prove a lower bound of 2 for the approximation factor of algorithm MST from the lectures. For this purpose consider only graphs for which the triangle inequality holds.

Exercise 3: Let G be a complete undirected graph in which all edge lengths are either 1 or 2. Give a 4/3-approximation algorithm for TSP in this special class of graphs. *Hint:* Start by finding a minimum 2-matching in G. A 2-matching is a subset S of edges so that every vertex has exactly 2 edges of S incident to it.

Exercise 4: Consider the following algorithm for Minimum Makespan Scheduling: The algorithm arranges the jobs in according to decreasing processing times and schedules them in this order in greedy manner. Give a lower bound strictly larger than one for the approximation ratio of this algorithm.

Exercise 5: Let A be a Minimum Makespan Scheduling algorithm with approximation factor α in the setting where every job is available at time 0. Assume now, that every job j has a release time r_j and may only be scheduled after this time. Show that the following is a 2α -approximation algorithm.

The new algorithm A' schedules the jobs in phases. Let S_{i+1} be the set of jobs released in $(F_{i-1}, F_i]$, and let F_i be the point in time, where schedule S_i completes. At time F_i the scheduler uses algorithm A to schedule the jobs in S_{i+1} .

Please visit the following link frequently for ongoing information:

http://www.informatik.uni-freiburg.de/~ipr/ipr_teaching/ws07_08/selected_topics.html