

Algorithmentheorie

13 – Bin Packing

Robert Elsässer

Bin Packing

- 1. Problembeschreibung und einfache Beobachtungen
- 2. Approximative Lösung des Online Bin Packing Problems
- 3. Approximative Lösung des Offline Bin Packing Problems

Problembeschreibung

Gegeben:

n Objekte der Größen

$$S_1, \ldots, S_n$$

mit 0 < $s_i \le 1$, für $1 \le i \le n$.

Gesucht:

Die kleinst mögliche Anzahl von Kisten (Bins) der Größe 1, mit der alle Objekte verpackt werden können.

Beispiel:

7 Objekte mit Größen 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

Problembeschreibung

Online Bin Packing:

Jedes (ankommende) Objekt muss verpackt sein, bevor das nächste Objekt betrachtet wird. Ein Objekt verbleibt in derjenigen Kiste, in die es zuerst gepackt wird.

Offline Bin Packing:

Zunächst wird die Anzahl n und alle n Objekte vorgegeben. Dann beginnt die Verpackung.

Beobachtung

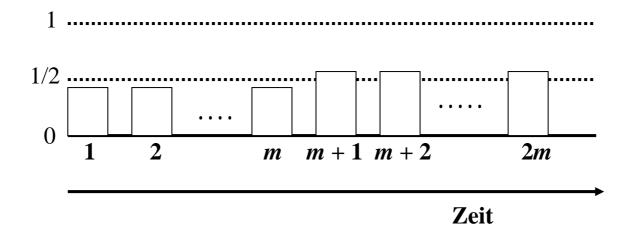
- Bin Packing ist beweisbar schwer.
 (Offline Version ist NP-schwer.
 Entscheidungsproblem ist NP-vollständig.)
- Kein Online Bin Packing Verfahren kann stets eine optimale Lösung liefern

Satz 1

Es gibt Eingaben, die jeden Online Bin Packing Algorithmus zwingen, wenigstens 4/3 OPT Bins zu verwenden, wobei OPT die minimal mögliche Binzahl ist.

Beweis:

Annahme: Online Bin Packing Algorithmus A benötigt stets weniger als 4/3 OPT Bins



Zeitpunkt 1:

OPT = m/2 und #Bins(A) = bEs gilt nach Annahme: $b < 4/3 \cdot m/2 = 2/3m$

Sei $b = b_1 + b_2$, wobei $b_1 = \# \text{Bins mit einem Objekt}$ $b_2 = \# \text{Bins mit zwei Objekten}$

Es gilt: $b_1 + 2 b_2 = m$, d.h. $b_1 = m - 2b_2$ und damit $b = b_1 + b_2 = m - b_2$ (*)

Zeitpunkt 2:

$$OPT = m$$

$$\# \mathsf{Bins}(A) \ge b + m - b_1 = m + b_2$$

$$\mathsf{Annahme:} \ m + b_2 \le \# \mathsf{Bins}(A) < 4/3m$$

$$b_2 < m/3$$

$$\implies$$
 mit (*): $b = m - b_2 > 2/3m$

Next Fit (NF), First-Fit (FF), Best-Fit (BF)

Next Fit:

Verpacke das nächste Objekt in dieselbe Kiste wie das vorherige, wenn es dort noch hineinpasst, sonst öffne eine neue Kiste und verpacke es dort.

Satz 2

(a) Für alle Inputfolgen *I* gilt:

$$NF(I) \leq 2OPT(I)$$
.

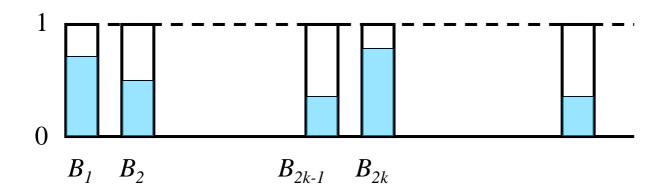
(b) Es gibt Inputfolgen *I* mit:

$$NF(I) \ge 2OPT(I) - 2$$
.

Next Fit

Beweis: (a)

Betrachte zwei Kisten B_{2k-1} , B_{2k} , $2k \le NF(I)$.



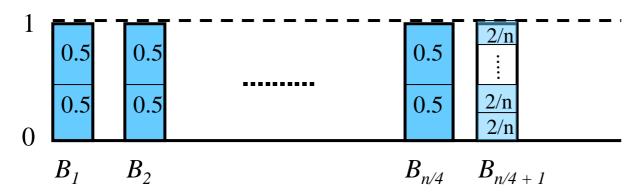
Next Fit

Beweis: (b)

Betrachte Inputfolge I mit Länge n $(n \equiv 0 \pmod{4})$:

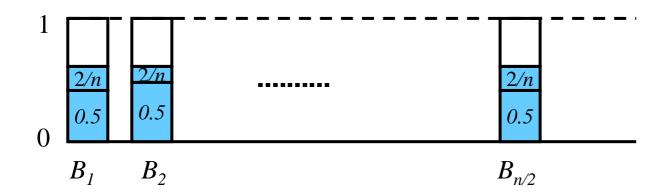
 $0.5, 2/n, 0.5, 2/n, 0.5, \dots, 0.5, 2/n$

Optimale Packung:



Next Fit

Next Fit liefert:



$$NF(I) =$$

$$OPT(I) =$$

First Fit:

Packe nächstes Objekt in die erste Kiste, in die es noch hineinpasst, wenn es eine solche Kiste gibt, sonst in eine neue Kiste.

Beobachtung:

Zu jedem Zeitpunkt kann es höchstens eine Kiste geben, die weniger als halb voll ist.

$$\rightarrow$$
 FF(1) \leq 20PT(1)

Satz 3

(a) Für alle Inputfolgen *I* gilt:

$$FF(I) \leq \lceil 17/10 \ OPT(I) \rceil$$

(b) Es gibt Inputfolgen *I* mit:

$$FF(I) \ge 17/10 (OPT(I) - 1)$$

(b') Es gibt Inputfolgen I mit:

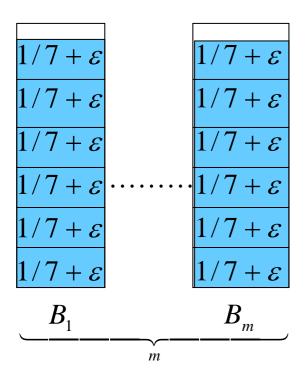
$$FF(I) = 10/6 OPT(I)$$

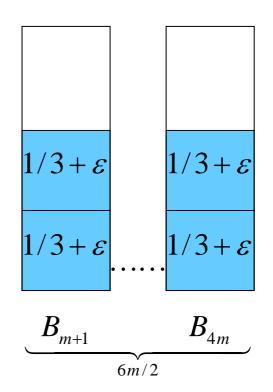
Beweis (b`): Inputfolge der Länge 3 · 6*m*

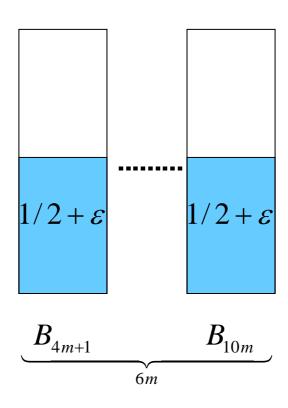
$$\underbrace{1/7+\varepsilon,\ldots,1/7+\varepsilon}_{6m},\underbrace{1/3+\varepsilon,\ldots,1/3+\varepsilon}_{6m},$$

$$\underbrace{1/2+\varepsilon,\ldots,1/2+\varepsilon}_{6m}$$

First-Fit liefert:







Best Fit

Best Fit:

Verpacke das nächste Objekt in diejenige Kiste, in die es am besten passt (d.h. den geringsten Platz ungenutzt lässt).

Verhalten von BF ähnlich zu FF

Laufzeit für Inputfolgen der Länge n

NF O(n)
FF O(
$$n^2$$
) \longrightarrow O($n \log n$)
BF O(n^2) \longrightarrow O($n \log n$)

Off-line Verfahren

n und $s_1, ..., s_n$ sind gegeben, bevor die Verpackung beginnt

Optimale Packung kann durch erschöpfende Suche bestimmt werden.

Idee für off-line Approximationsalgorithmus:

Sortiere die Objekte zunächst nach abnehmender Größe und verpacke größere Objekte zuerst!

First Fit Decreasing (FFD) bzw. FFNI Best Fit Decreasing (BFD)

Lemma 1

Sei I eine Folge von n Objekten mit Größen

$$s_1 \ge s_2 \ge \dots \ge s_n$$

und sei m = OPT(I).

Dann haben alle von FFD in den Bins

$$B_{m+1}$$
, B_{m+2} , ..., $B_{FFD(I)}$

verpackten Objekte eine Größe von höchstens 1/3.

Lemma 2

Sei I eine Folge von n Objekten mit Größen

$$s_1 \ge s_2 \ge \dots \ge s_n$$

und sei m = OPT(I).

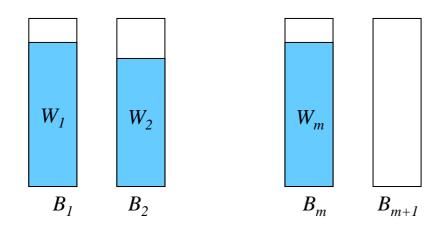
Dann ist die Anzahl der Objekte, die FFD in die Kisten

$$B_{m+1}$$
, B_{m+2} , ..., $B_{FFD(I)}$

verpackt, höchstens m-1.

Beweis:

Annahme: Es gibt mehr als m-1 Objekte x_1, \dots, x_m in I, die FFD in extra Kisten verpackt.



Satz

Für alle Inputfolgen *I* gilt:

$$FFD(I) \le (4 \ OPT(I) + 1)/3.$$

Satz

1. Für alle Inputfolgen I gilt:

$$FFD(I) \le 11/9 \ OPT(I) + 4.$$

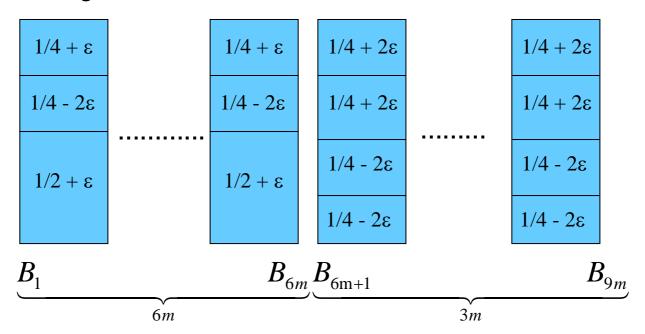
2. Es gibt Inputfolgen *I* mit:

$$FFD(I) = 11/9 \ OPT(I).$$

Beweis (b): Inputfolge der Länge $3 \cdot 6m + 12m$

$$\underbrace{\frac{1/2+\varepsilon,\ldots,1/2+\varepsilon}_{6m},\underbrace{1/4+2\varepsilon,\ldots,1/4+2\varepsilon}_{6m}}_{1/4+\varepsilon,\ldots,1/4+\varepsilon},\underbrace{1/4-2\varepsilon,\ldots,1/4-2\varepsilon}_{12m}$$

Optimale Packung:



First Fit Decreasing liefert:

