

Divide and Conquer

PIIF

Das Divide - and - Conquer Prinzip

- Quicksort
- Formulierung und Analyse des Prinzips
- Geometrisches Divide and Conquer
 - Closest-Pair
 - Segmentschnitt

Quicksort: Sortieren durch Teilen

```
\mathbf{V}
    F_1 < v
                                     F_r > v
function Quick (F:Folge): Folge;
{liefert zu unsortierter Folge F die sortierte}
begin
         if |F| = 1 then Quick:=F
         else { wähle Pivotelement v aus F;
                teile F in F_1 mit Elementen < v,
                und in F<sub>r</sub> mit Elementen > v
                Quick:= Quick(F<sub>1</sub>) v Quick(F<sub>r</sub>) }
         end;
```


Formulierung des D&C Prinzips

Divide-and-Conquer Verfahren zur Lösung eines Problems der Größe *n*

1.Divide:

n > c: Teile das Problem in k Teilprobleme der Größe $n_1, ..., n_k$ auf $(k \ge 2)$

 $n \le c$: Löse das Problem direkt

2.Conquer:

Löse die *k* Teilprobleme auf dieselbe Art (rekursiv)

3.Merge:

Füge die berechneten Teillösungen zu einer Gesamtlösung zusammen

Analyse

T(n) – Maximale Anzahl von Schritten, um ein Problem der Größe n zu lösen

Best Case: k = 2, $n_1 = n_2 = n/2$

Divide- und Mergeaufwand : DM(n)

$$T(1) = a$$

$$T(n) = 2T(n/2) + DM(n)$$

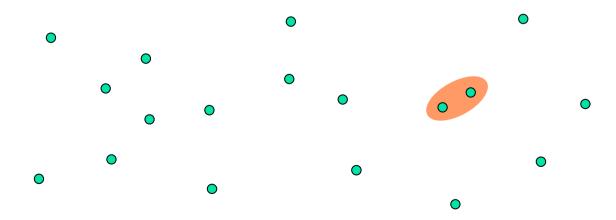
Geometrisches Problem:

Problem: Nächstes Paar

Eingabe: n Punkte in der Ebene

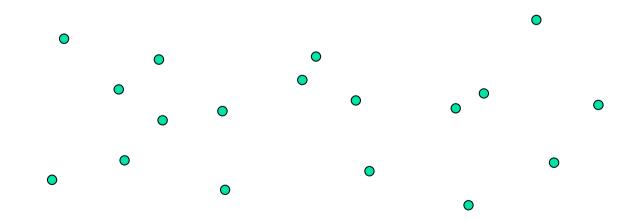
Ausgabe: Das Paar q,r mit geringstem Abstand

Beispiel:



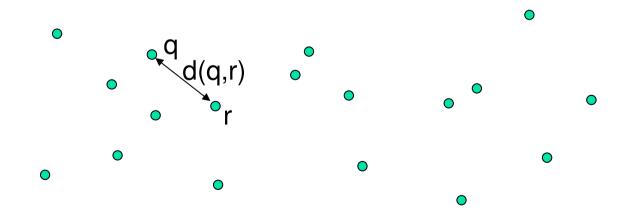
Notation:

d(q,r) bezeichnet Abstand zwischen q und r



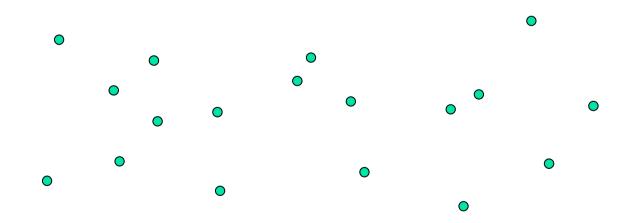
Notation:

d(q,r) bezeichnet Abstand zwischen q und r

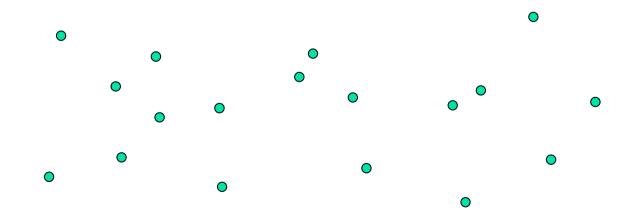


Plan für 2D:

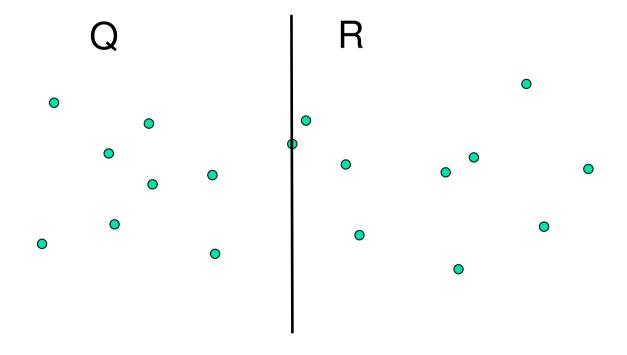
Wie MergeSort nur im 2D



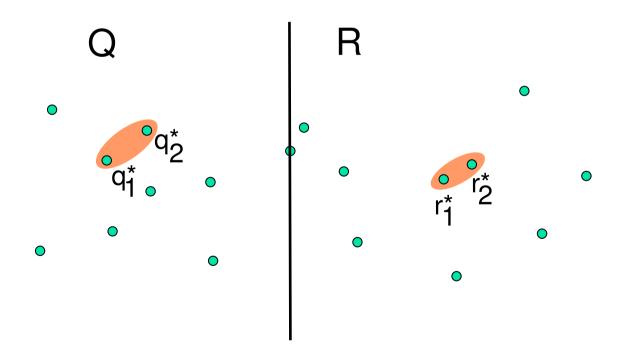
- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate



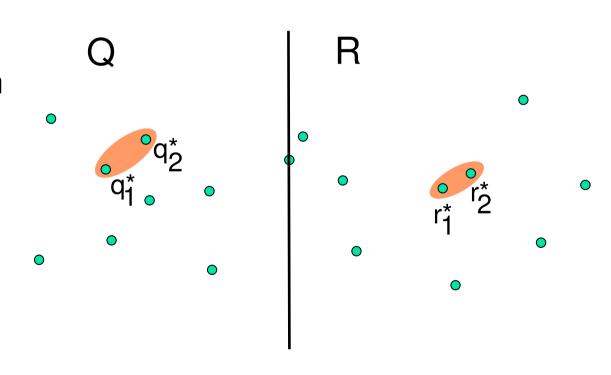
- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte



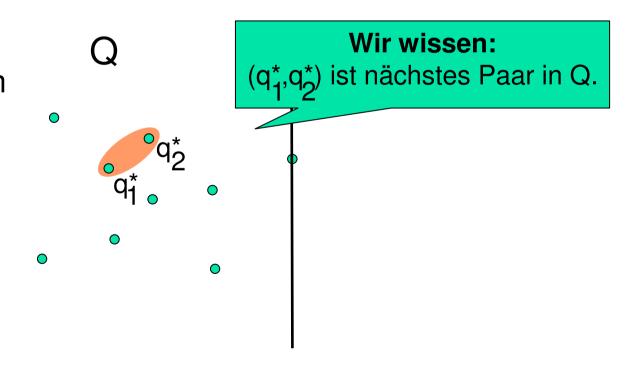
- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte
- Löse rekursiv



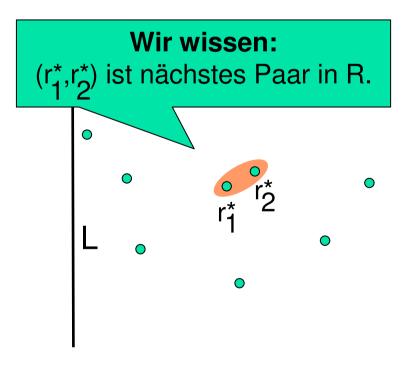
- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte
- Löse rekursiv
- Füge zusammen



- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte
- Löse rekursiv
- Füge zusammen



- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte
- Löse rekursiv
- Füge zusammen



- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate
- Teile in der Mitte
 Löse rekursiv
 Füge zusammen
 Q
 Wir wissen nicht:

 Gibt es Paare (q,r) mit q∈Q und r∈ R, die nah beieinander liegen?

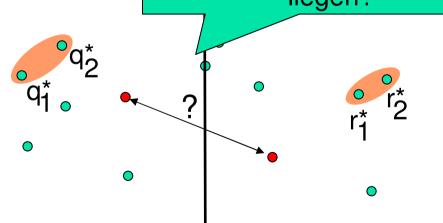
Plan:

- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate

- Teile in der Mitte
- Löse rekursiv
- Füge zusammen

Wir wissen nicht:

Gibt es Paare (q,r) mit q∈ Q und r∈ R, die nah beieinander liegen?



Problem:

Es gibt sehr viele solche Paare. ($\Theta(n^2)$ viele).

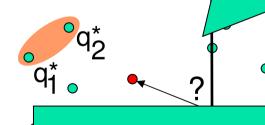
Plan:

- Wie MergeSort nur im 2D
- Sortiere Punktmenge nach x-Koordinate

- Teile in der Mitte
- Löse rekursiv
- Füge zusammen

Wir wissen nicht:

Gibt es Paare (q,r) mit q∈ Q und r∈ R, die nah beieinander liegen?



Problem:

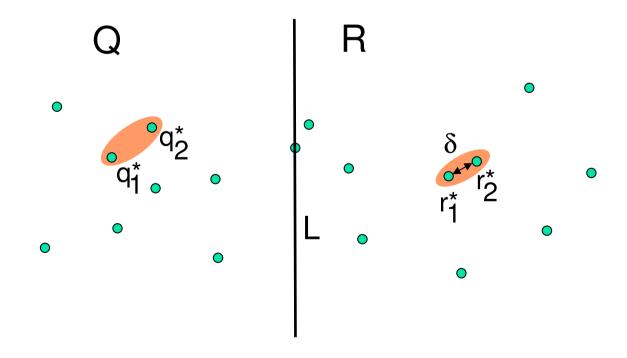
Es gibt sehr viele solche Paare. ($\Theta(n^2)$ viele).

Zeige:

Es genügt O(n) geschickt gewählte Paare zu testen.

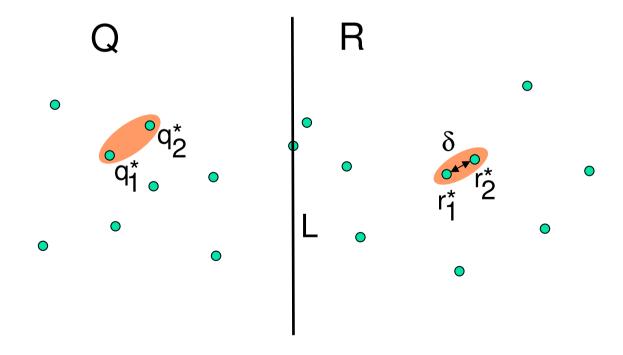
Definition:

$$\delta = \min\{d(q_1^*, q_2^*), d(r_1^*, r_2^*)\}$$



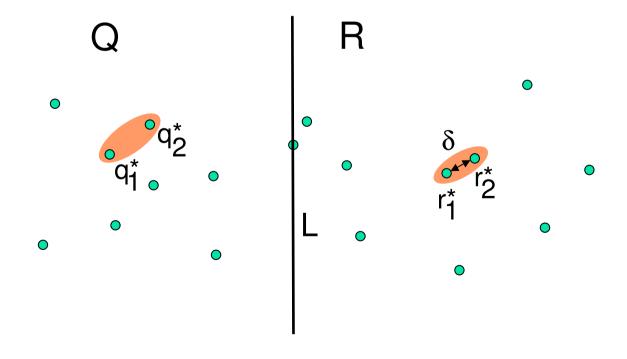
Wichtige Beobachtung:

Sind $q,r \in Q$, dann gilt $d(p,r) \ge \delta$. Sind $q,r \in R$, dann gild $d(p,r) \ge \delta$.



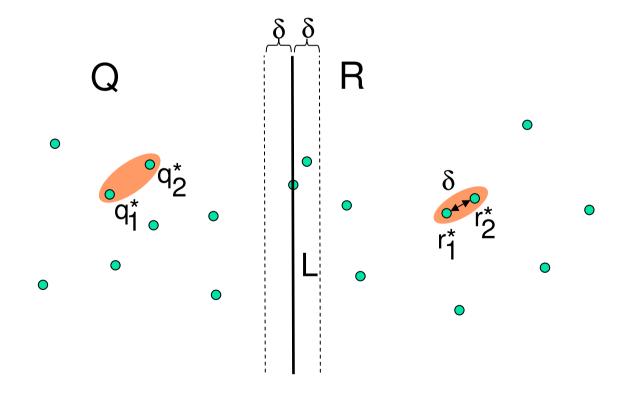
Lemma 1.1

Gibt es $q \in Q$ und $r \in R$ mit $d(q,r) < \delta$, dann sind sowohl q als auch r höchstens δ von L entfernt.



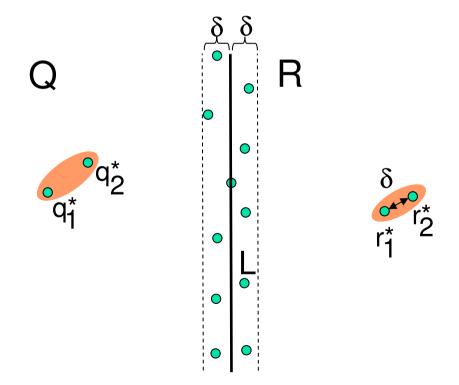
Lemma 1.1

Gibt es $q \in Q$ und $r \in R$ mit $d(q,r) < \delta$, dann sind sowohl q als auch r höchstens δ von L entfernt.



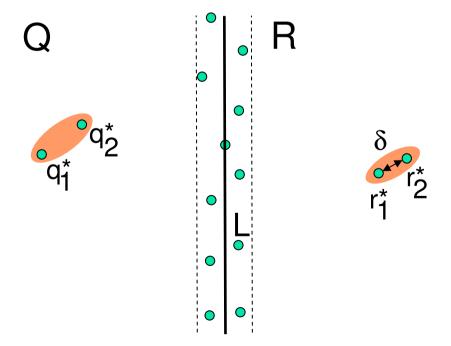
Was gewinnen wir?

Alle Punkte können nahe an L liegen



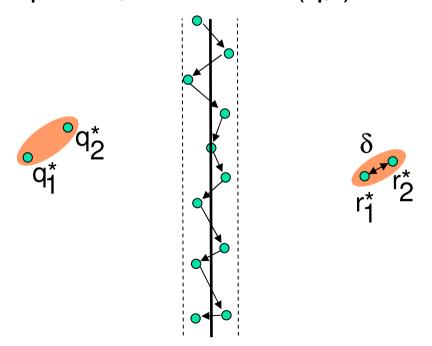
Abhilfe:

- Wir wollen nur Paare (q,r) testen, wenn
 - (a) q und r nah an L liegen und
 - (b) q und r kleinen Abstand in y-Richtung haben



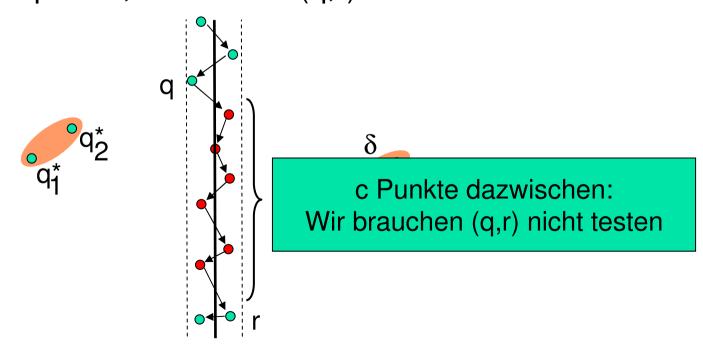
Idee:

- Sortiere nahe Punkte nach y-Koordinate
- Zeige: Liegen in dieser Sortierung mehr als c Punkte zwischen q und r, dann kann (q,r) nicht n\u00e4chstes Paar sein



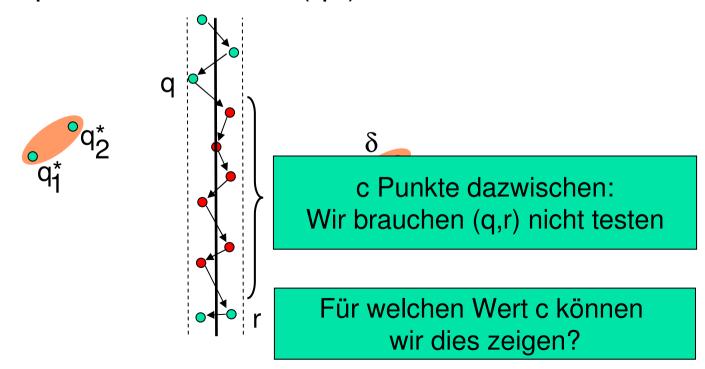
Idee:

- Sortiere nahe Punkte nach y-Koordinate
- Zeige: Liegen in dieser Sortierung mehr als c Punkte zwischen q und r, dann kann (q,r) nicht n\u00e4chstes Paar sein



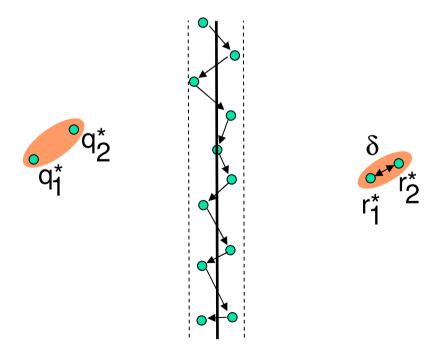
Idee:

- Sortiere nahe Punkte nach y-Koordinate
- Zeige: Liegen in dieser Sortierung mehr als c Punkte zwischen q und r, dann kann (q,r) nicht n\u00e4chstes Paar sein



Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.



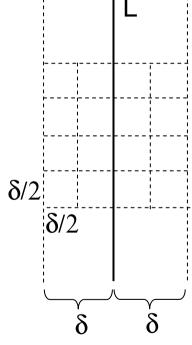
Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

Beweis:

• Teile Nahbereich in Quadrate der Seitenlänge $\delta/2$ auf

Beh.: In jedem Quadrat ist nur ein Punkt.



Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

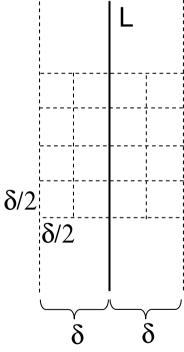
Beweis:

 Teile Nahbereich in Quadrate der Seitenlänge δ/2 auf

Beh.: In jedem Quadrat ist nur ein Punkt.

Beweis:

Annahme: Zwei Punkte q,r in einem Quadrat



Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

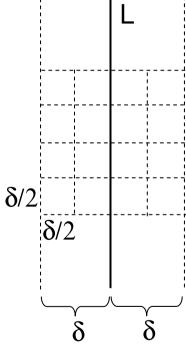
Beweis:

 Teile Nahbereich in Quadrate der Seitenlänge δ/2 auf

Beh.: In jedem Quadrat ist nur ein Punkt.

Beweis:

- Annahme: Zwei Punkte q,r in einem Quadrat
- Dann ist $d(q,r) \le \delta / 2^{1/2} < \delta$



Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

Beweis:

• Teile Nahbereich in Quadrate der Seitenlänge $\delta/2$ auf

Beh.: In jedem Quadrat ist nur ein Punkt.

Beweis:

- Annahme: Zwei Punkte q,r in einem Quadrat
- Dann ist $d(q,r) \le \delta / 2^{1/2} < \delta$

Ouadrat ist entweder kor

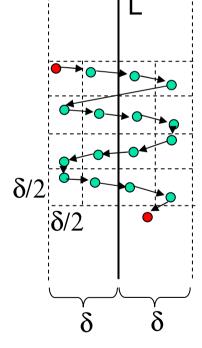
Ein Quadrat ist entweder komplett links oder rechts von L. Also sind q,r beide in Q oder beide in R. Damit gilt $d(q,r) \ge \delta$.

Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

Beweis:

Seien mind. 15 Punkte zwischen q und r



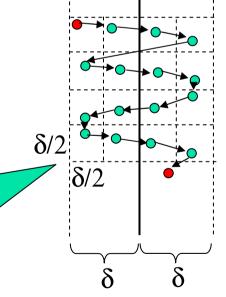
Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

Beweis:

Seien mind. 15 Punkte zwischen q und r

Zwischen den beiden roten Punkten liegen 15 andere Punkte

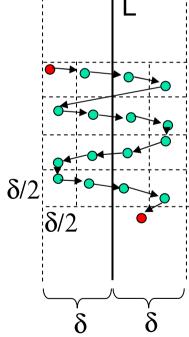


Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

Beweis:

- Seien mind. 15 Punkte zwischen q und r
- Dann sind mindestens 3 Reihen
 Quadrate zwischen q,r, weil in jedem
 Quadrat höchstens ein Punkt ist

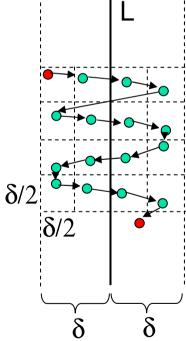


Lemma 1.2

Liegen in der Sortierung mindestens 15 Punkte zwischen q und r, dann ist $d(q,r) > \delta$.

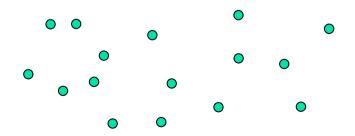
Beweis:

- Seien mind. 15 Punkte zwischen q und r
- Dann sind mindestens 3 Reihen
 Quadrate zwischen q,r, weil in jedem
 Quadrat höchstens ein Punkt ist
- Dann muss d(q,r) mindestens $3/2 \cdot \delta > \delta$ sein



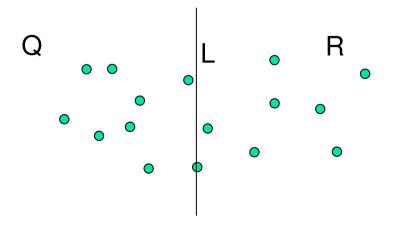
Der Algorithmus im Überblick:

Teile Punktmenge an Linie L in Q und R auf

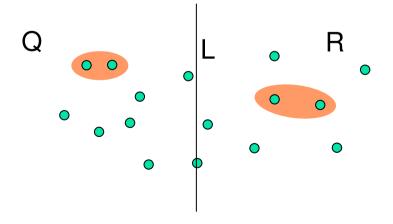


Der Algorithmus im Überblick:

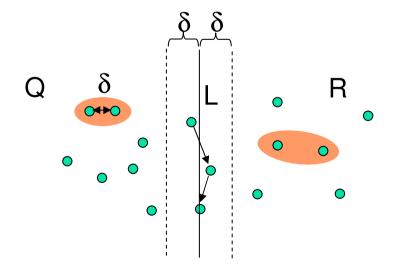
Teile Punktmenge an Linie L in Q und R auf



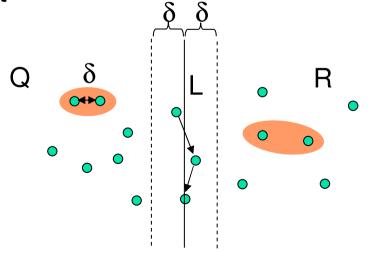
- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R



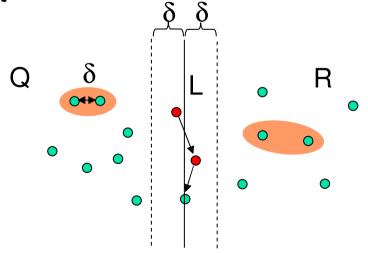
- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R
- Sortiere Punkte nach y-Koord.



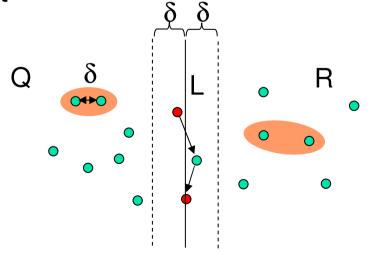
- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R
- Sortiere Punkte nach y-Koord.
- Teste alle Paare, deren Abstand in der Sortierung kleiner als 16 ist



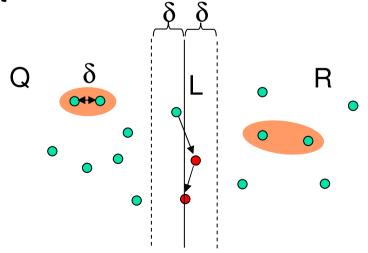
- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R
- Sortiere Punkte nach y-Koord.
- Teste alle Paare, deren Abstand in der Sortierung kleiner als 16 ist



- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R
- Sortiere Punkte nach y-Koord.
- Teste alle Paare, deren Abstand in der Sortierung kleiner als 16 ist



- Teile Punktmenge an Linie L in Q und R auf
- Löse Problem rekursiv auf Q und R
- Sortiere Punkte nach y-Koord.
- Teste alle Paare, deren Abstand in der Sortierung kleiner als 16 ist



NächstesPaar(P)

- 1. MergeSort(P, 1, length[P]) ➤ Sortiere nach x-Koordinate
- 2. return NächstesPaarRec(P,1,length[P])

NächstesPaar(P)

MergeSort(P, 1, length[P])

 $\Theta(n \log n)$

2. return NächstesPaarRec(P,1,length[P])

NächstesPaar(P)

- MergeSort(P, 1, length[P])
- 2. return NächstesPaarRec(P,1,length[P])

 $\frac{n=length[P]}{\Theta(n log n)}$

 $T(n)+\Theta(1)$

NächstesPaar(P)

- MergeSort(P, 1, length[P])
- 2. **return** NächstesPaarRec(P,1,length[P])

$$\Theta(n \log n)$$

$$\frac{T(n)+\Theta(1)}{T(n)+\Theta(n \log n)}$$

- 1. **if** c-a=1 **then return** (P[a],P[a+1])
- 2. **if** c-a=2 **then return** nächstes Paar aus (P[a],P[a+1]), (P[a],P[a+2]), (P[a+1], P[a+2])
- 4. b $\leftarrow \lfloor (a+c)/2 \rfloor$
- 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

Rekursionsabbruch bei 2 oder 3 Punkten. Sortiere die Punkte anschließend nach den y-Koordinaten

- 1. **if** c-a=1 **then return** (P[a],P[a+1])
- 2. **if** c-a=2 **then return** nächstes Paar aus (P[a],P[a+1]), (P[a],P[a+2]), (P[a+1], P[a+2])
- 4. b ← (a+c)/2
- 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

- 1. if c-a=1 then retu 2. if c-a=2 then retu (P[a],P[a+1]), (Median)

 [Berechnung des mittleren Elements of Median)

 [P[a+2])
- 4. b $\leftarrow \lfloor (a+c)/2 \rfloor$
- 5. $(q_1^*, q_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

- 1. **if** c-a=1 **then return** (P[a],P[a+1])
- 2. **if** c-a=2 **then return** nächstes Paar aus (P[a],P[a+1]), (P[a],P[a-linke Hälfte
- 4. b $\leftarrow \lfloor (a+c)/2 \rfloor$
- 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

- 1. if c-a=1 then return (P[a],P[a+1])
- 2. if c-a=2 then return nächstes Paar aus (P[a],P[a+1]), (P[a],P[a+2]), (P[a+1],P[a+2])
- 4. b \leftarrow (a+c)/2
- **Rekursiver Aufruf** 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(F f <u>f ur rechte H alfte</u>$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

NächstesPaarRec(P,a,c)

- 1. **if** c-a=1 **then return** (P[a],P[a+1])
- 2. **if** c-a=2 **then return** nächstes Paar aus (P[a],P[a+1]), (P[a],P[a+2]), (P[a+1], P[a+2])
- 4. b ← (a+c)/2
- 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen

Pseudocode für das Zusammensetzen der beiden Hälften

- 1. **if** c-a=1 **then return** (P[a],P[a+1])
- 2. **if** c-a=2 **then return** nächstes Paar aus (P[a],P[a+1]), (P[a],P[a+2]), (P[a+1], P[a+2])
- 4. b $\leftarrow \lfloor (a+c)/2 \rfloor$
- 5. $(q_1^*, q_2^*) \leftarrow N \ddot{a} chstes Paar Rec(P, a, b)$
- 6. $(r_1^*, r_2^*) \leftarrow N\ddot{a}chstesPaarRec(P, b+1, c)$
- 7. > Zusammensetzen


```
1. Merge(P,a,b,c) \triangleright Sortiere nach y-Koordinate
2. i \leftarrow 1
3. for i \leftarrow a to c do
          if d(P[i],L) < \delta then
              P'[i] \leftarrow P[i]; j \leftarrow j+1
6. (q,r) \leftarrow (P'[1], P'[length(P')])
7. for i \leftarrow 1 to length(P') do
       for j \leftarrow 1 to 15 do
          if i+j \leq length(P') then
             if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```



```
Merge(P,a,b,c) > Sortiere nach y-Koordinate
2. \quad i \leftarrow 1
3. for i \leftarrow a to c do
          if d(P[i],L) < \delta then
             P'[i] \leftarrow P[i]; i \leftarrow j+1
6. (q,r) \leftarrow (P'[1], P'[length(P')])
7. for i \leftarrow 1 to length(P') do
       for j \leftarrow 1 to 15 do
          if i+j \leq length(P') then
             if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```


Zusammensetzen

```
1. Merge(P,a,b,c) \triangleright Sortiere
2. j \leftarrow 1
3. for i \leftarrow a to c do
4. if d(P[i],L) < \delta then
5. P'[j] \leftarrow P[i]; j \leftarrow j+1
6. (q,r) \leftarrow (P'[1], P'[length(P')])
7. for i \leftarrow 1 to length(P') do
8. for j \leftarrow 1 to 15 do
9. if i+j \leq length(P') then
10. if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
```

11. **return** nächstes Paar aus (q,r), (q_1^*,q_2^*) , und (r_1^*,r_2^*)


```
Merge(P,a,b,c) > Sortiere nach y-Koordinate
2. \quad i \leftarrow 1
                                             (q,r) wird mit initialisiert (hier
3. for i \leftarrow a to c do
                                              kann man jedes beliebige
          if d(P[i],L) < \delta then
                                                   Paar verwenden)
             P'[i] \leftarrow P[i]; i \leftarrow i+1
   (q,r)\leftarrow (P'[1], P'[length(P')])
    for i \leftarrow 1 to length(P') do
       for j \leftarrow 1 to 15 do
          if i+j \leq length(P') then
            if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```



```
Merge(P,a,b,c) > Sortiere nach y Koordinata
                                                    Für alle Punkte aus P teste,
2. \quad i \leftarrow 1
                                                    ob sie zusammen mit einem
     for i \leftarrow a to c do
                                                       ihrer 15 Nachfolger ein
          if d(P[i],L) < \delta then
                                                   besseres Paar bilden als das
             P'[i] \leftarrow P[i]; i \leftarrow i+1
                                                          bislang gemerkte
   (q,r)\leftarrow (P'[1], P'[length(P')])
    for i \leftarrow 1 to length(P') do
       for j \leftarrow 1 to 15 do
          if i+j \leq length(P') then
            if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
10.
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```



```
Merge(P,a,b,c) \triangleright Sortiere nach y-Koordinate
2. i \leftarrow 1
3. for i \leftarrow a to c do
          if d(P[i],L) < \delta then
             P'[i] \leftarrow P[i]; i \leftarrow j+1
6. (q,r) \leftarrow (P'[1], P'[length(P')])
7. for i \leftarrow 1 to length(P') do
                                                                Gib das beste
       for j \leftarrow 1 to 15 do
                                                               gefundene Paar
          if i+j \leq length(P') then
                                                                    zurück
            if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; P'[i+j]
10.
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```



```
1. Merge(P,a,b,c) \triangleright Sortiere nach y-Koordinate
2. i \leftarrow 1
3. for i \leftarrow a to c do
          if d(P[i],L) < \delta then
              P'[i] \leftarrow P[i]; j \leftarrow j+1
6. (q,r) \leftarrow (P'[1], P'[length(P')])
7. for i \leftarrow 1 to length(P') do
       for j \leftarrow 1 to 15 do
          if i+j \leq length(P') then
             if d(P'[i],P'[i+j]) < d(q,r) then q \leftarrow P'[i]; r \leftarrow P'[i+j]
11. return nächstes Paar aus (q,r), (q_1^*,q_2^*), und (r_1^*,r_2^*)
```


$$T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$$

$$T(n) =$$

Verifiziere durch Induktion

$$T(n) \le an \log n$$

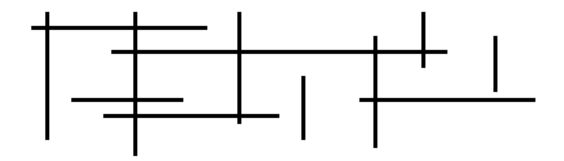
$$T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$$

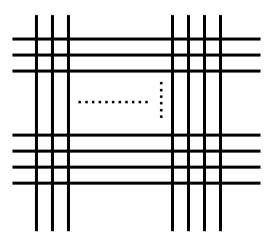
$$n = 2^{i}$$

$$i = 1$$
: ok

$$T(2^i) =$$

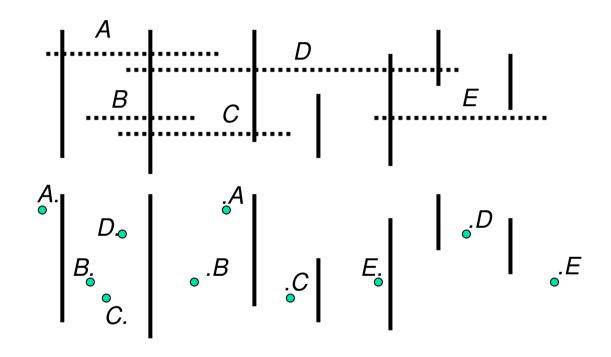
Bestimme alle Paare sich schneidender Segmente





Segmentschnittproblem

Bestimme alle Paare sich schneidender Segmente



Die getrennte Repräsentation der Segmente erlaubt eine Aufteilung

Input: Menge S bestehend aus vertikalen Segmenten und

Endpunkten von horizontalen Segmenten.

Output: Alle Schnittpunkte von vertikalen Segmenten mit horizontalen

Segmenten, von denen mindestens ein Endpunkt in S ist.

1. Divide

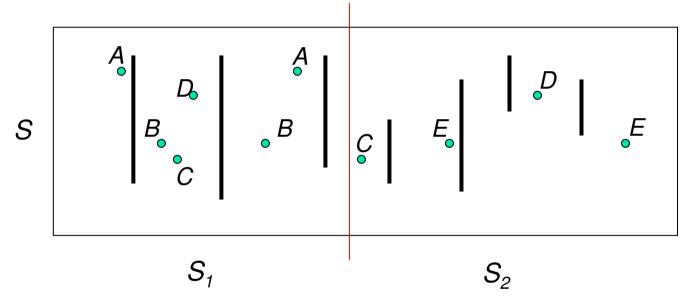
if |S| > 1

then teile S mittels einer vertikalen Geraden G in zwei gleichgroße Mengen S_1 (links von G) und

 S_2 (rechts von G)

else S enthält keine Schnitte

1. Divide-Schritt



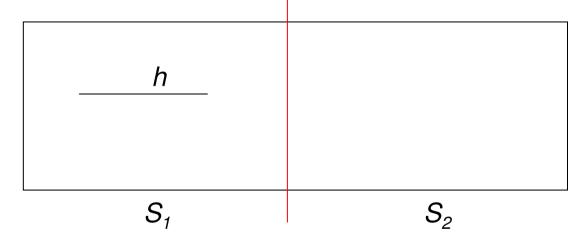
2. Conquer

ReportCuts(S_1); ReportCuts(S_2)

3. Merge: ???

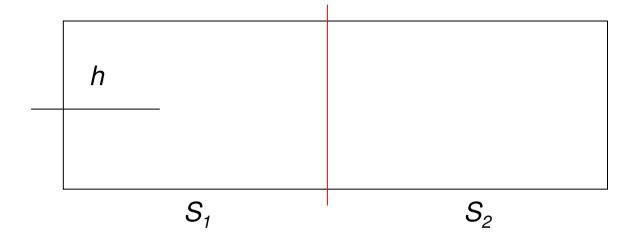
Mögliche Schnitte für ein horizontales Segment in S_1

Fall 1: beide Endpunkte in S_1

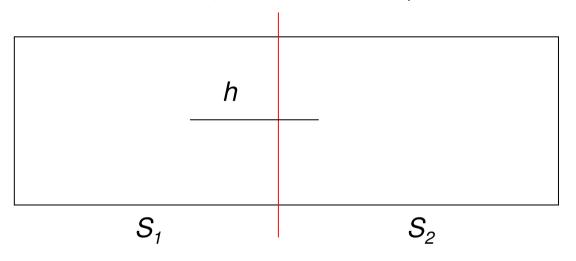


Fall 2: nur ein Endpunkt von h in S_1

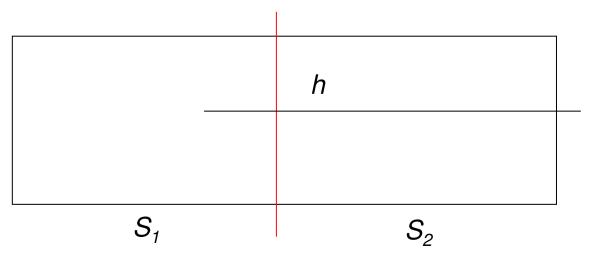
2 a) rechter Endpunkt in S_1



2 b) linker Endpunkt von h in S_1



rechter Endpunkt in S_2

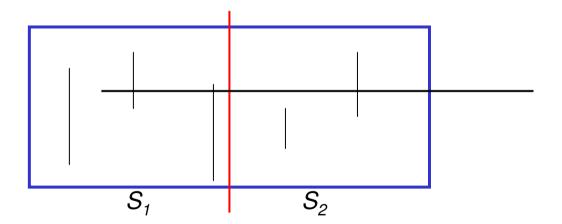


rechter Endpunkt nicht in S_2

Verfahren: ReportCuts(S)

3. Merge:

Gib Schnitte aus zwischen vertikalen Segmenten in S_2 und horizontalen Segmenten in S_1 , bei denen linker Endpunkt in S_1 und rechter Endpunkt weder in S_1 noch S_2 Analog für S_1



Menge S

L(S): y-Koordinaten aller linken Endpunkte in *S,* deren rechter Partner nicht in *S*

R(S): y-Koordinaten aller rechten Endpunkte in S, deren linker Partner nicht in S

V(S): y-Intervalle der vertikalen Segmente in S

Basisfälle

S enthält nur ein Element s

Fall 1:
$$s = (x,y)$$
 ist ein linker Endpunkt $L(S) = \{y\}$ $R(S) = \emptyset$ $V(S) = \emptyset$

Fall 2:
$$s = (x,y)$$
 ist ein rechter Endpunkt $L(S) = \emptyset$ $R(S) = \{y\}$ $V(S) = \emptyset$

Fall 3:
$$s = (x, y_1, y_2)$$
 ist ein vertikales Segment $L(S) = \emptyset$ $R(S) = \emptyset$ $V(S) = \{[y_1, y_2]\}$

Merge-Schritt

$$L(S_i)$$
, $R(S_i)$, $V(S_i)$ $i=1,2$ seien berechnet

$$S = S_1 \cup S_2$$

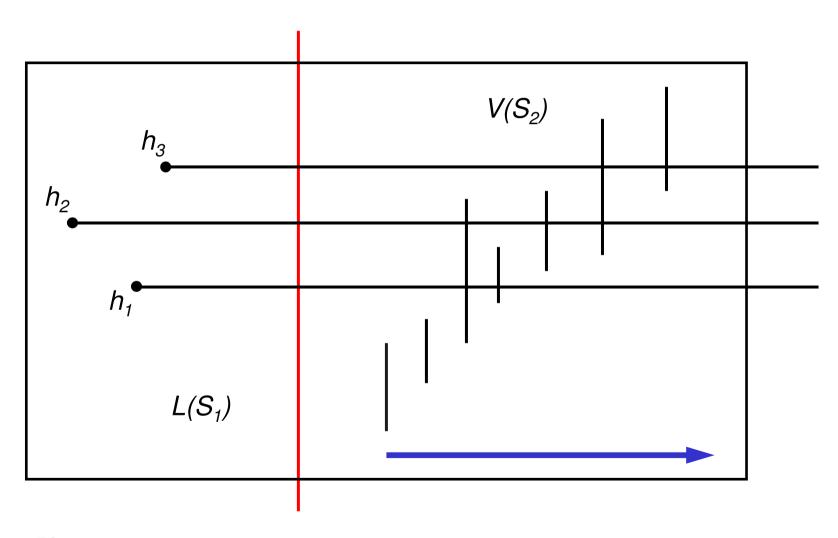
$$L(S) =$$

$$R(S) =$$

$$V(S) =$$

L,R: sortiert nach steigenden y-Koordinaten verkettete Listen

V: sortiert nach steigenden unteren Endpunkten verkettete Liste



Laufzeit

Eingabe (vertikale Seg., linke/rechte Endpunkte horizontaler Seg.) wird anfangs einmal sortiert; abgespeichert in Array.

Divide-and-Conquer:

$$T(n) = 2T(n/2) + an + Größe der Ausgabe$$

 $T(1) = O(1)$

$$O(n \log n + k)$$
 $k = \#Schnittpunkte$