Albert-Ludwigs-Universität Freiburg Institut für Informatik Dr. Alexander Souza Thomas Janson

Algorithm Theory

Exercise 1 (Universal hashing)

[Points: 5]

In the division method for creating hash functions, we map a key k into one of m slots by taking the remainder of k divided by m. That is, the hash function is

$$h(k) = k \mod m$$
.

Consider a version of the division method in which $h(k) = k \mod m$, where $m = 2^p - 1$, $p \in \mathbb{N}$, and $k = k_n...k_1k_0$ is a character string interpreted in radix 2^p . The value of k is then $2^{np}k_n + ... + 2^pk_1 + k_0$. Show that if we can derive string x from string y by permuting its characters, then x and y hash to the same value. Give an example of an application in which this property would be undesirable in a hash function.

Two hints:

- 1. $2^p = 1 + \sum_{i=0}^{p-1} 2^i$.
- 2. Show that $2^{pi} 1$ is divisible by $2^p 1$ for $i \ge 1$.

Exercise 2 (Perfect hashing)

[Points: 5]

Let $U = \{0, ..., 28\}$ and $S = \{1, 5, 7, 8, 9, 13, 20, 22, 24, 25\}.$

1. Use the two-level scheme described in the lecture to build a perfect hash function with k=5, N=29, n=|S|=10. For i=0,...,n-1 determine the values W_i , b_i , k_i , and h_{k_i} .

hash value	keys mapped to hash value	#keys	2nd hash table size	
i	$W_i = \{x \in S : h_5(x) = i\}$	b_i	$m_i = 2b_i \left(b_i - 1 \right) + 1$	$ s_i $
0				
1				
2				
3				
4				
5				
6				
7				
8	_			
9				

2. Give the hash table for S.

Exercise 3 (Amortized Analysis)

Consider a stairway with two allowed operations

- 1. Walk up one stair with cost 1.
- 2. Completely go down to the bottom of the stairway which then costs the number of stairs from the current stair to the ground.

Tasks:

- 1. What is the amortized cost for n operations?
- 2. Are the amortized cost for n operations still the same when we are also able to step up several stairs in one single operation?

Justify your answers.

Exercise 4 (Amortized Analysis)

[Points: 2]

Consider the bit counter example from the lecture. A counter using an array with k bits is counted upwards in an INCREMENT operation starting at 0. Show that if a DECREMENT operation were included in the k-bit counter example, n operations could cost as much as $\Theta(nk)$ time.

Exercise 5 (Amortized Analysis)

[Points: 3]

Suppose we perform a sequence of n operations on a data structure in which the ith operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis to determine the amortized cost per operation.

[Points: 5]