
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Dr. Alexander Souza
Thomas Janson

WS 2011/12
Sheet 06

Algorithm Theory

Exercise 1 (Union-find) [Points: 5]

Consider the union-find data structure with bottom-up trees introduced in the lecture (the
root of the first two trees becomes the root) and with path compression (all nodes on a find-
set-path become children of the root). For any n, state a sequence of n find-set operations and
O (n) union operations starting on a sufficiently large universe that each find-set operation
has running time Ω (log n).

Exercise 2 (Union-find) [Points: 5]

Use the union-find data structure with bottom-up trees with the weighted union and path
compression optimization.

(a) Write an operation sequence of make-set, union, and find-set which can produce the
following data structure

a

g

b

f

c d

e

(b) We are given a graph G = (V,E) and a graph coloring c : V → C where C is a set of
colors.

• A node set M is monochrome connected if each pair of nodes in M is connected
by a path where all nodes have the same color.

• A monochrome connected set M is maximal if there exists no monochrome con-
nected set M with M ⊂ M �.

Create an algorithm based on a union-find data structure which computes the maximal
monochrome connected sets of a graph G = (V,E).

(c) Give a preferably small upper bound for the asymptotic running time of your algorithm.
Justify your answer.



Algorithm 1 Maximum monochrome connected sets

Input: graph G = (V,E), graph coloring c : V → C
Output: union-find data structure where find-set (u) = find-set (v) iff u and v are in the
same maximal monochrome connected set

Exercise 3 (Greedy algorithm) [Points: 7]

We are given n jobs which can be executed on a given single machine. Each job j has weight
wj and execution time pj . The jobs are processed in some sequence S = (s[1], s[2], ..., s[n])
where s[i] denotes the job executed at i-th position. Suppose that job j is in position k, i.e.,
j = s[k], then its completion time is

cj =
k�

i=1

ps[i]

Our objective function is to minimize
�

j
wj · cj over all possible sequences.

(a) Assume we have equal weights wj = 1 and for n = 4 the execution times are p =
(5, 7, 8, 9). Calculate the objective function for the sequences S1 = (1, 2, 3, 4), S2 =
(1, 4, 2, 3), S3 = (4, 2, 3, 1), and S4 = (4, 3, 2, 1).

(b) Proof that it is an optimal solution to sort the n jobs in increasing order for the special
case wj = 1.

(c) Prove that it is in general optimal to sort the jobs according to increasing pj/wj ratio.

Exercise 4 (Greedy algorithm) [Points: 3]

Give a greedy algorithm which solves the activity selection problem optimally and sorts the
n activities ai = [si, fi), i = 1, ..., n such that

s1 ≤ s2 ≤ ... ≤ sn.


