

Algorithm Theory

01 - Introduction

Dr. Alexander Souza

Winter term 11/12

Organization

-10 -10 2-14 2-14 ese 4 groups wil	101-01-018 051-00-034 101-00-018 078-00-014 I take place biweekly ass, teamwork up to 3 students
on during this cla	135, 120
ill be out on Wec	d.,26.10.
weekly during W	/edclass
-in Wed.,2.11., fi	irst tutorials Thu.,10.11./Fri.,11.11.
	, schedule, sheets, grouping etc.
	slides, recording

Organization

Final exam: Date and Time: t.b.a. Admission 1 exercise presented during the tutorials 50% of total exercise points

More Details: Kursvorlesung, 3+1 SWS 6 ECTS Credits Lectures in English Tutorials supervised by Thomas Janson English: Mahdi German: Geißer, Jarecki Camtasia recording available

Literature

Th. Ottmann, P. Widmayer:Algorithmen und Datenstrukturen4th Edition, Spektrum Akademischer Verlag,Heidelberg, 2002

Th. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, Second Edition MIT Press, 2001

Original literature

Algorithms and data structures

Design and analysis techniques for algorithms

- Divide and conquer ۲
- •
- •
- •
- Amortized analysis

Analysis technique

Randomization - For laber reference

Algorithms and data structures

Problems and application areas

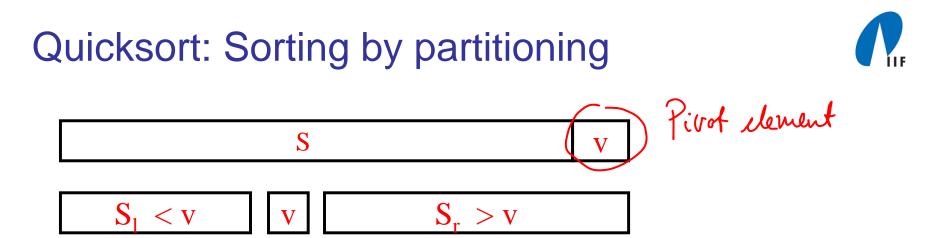
- Geometric algorithms
- Algebraic algorithms
- Graph algorithms
- Data structures
- Internet algorithms
- Optimization methods
- Algorithms on strings

Divide and Conquer

Winter term 11/12

The divide-and-conquer paradigm

- Quicksort
- Formulation and analysis of the paradigm
- Geometric divide-and-conquer
 - Closest pair 🧕
 - Line segment intersection
 - Voronoi diagrams



function Quick (S: sequence): sequence;

```
{returns the sorted sequence S}
```

begin

 $\begin{array}{l} \text{if } \#S <= 1 \text{ then } \underline{\text{Quick}:=S} \\ \text{else } \{ \text{ choose pivot element } v \text{ in } S; \\ \text{ partition } S \text{ into } \underline{S}_{l} \text{ with elements } < v, \\ \text{ and } \underline{S}_{r} \text{ with elements } > v \\ \text{ Quick:= } \underline{\text{Quick}(S_{l}) \ v \ \text{Quick}(S_{r}) \ } \end{array}$

end;

Formulation of the D&C paradigm

Divide-and-conquer method for solving a problem instance of size *n*:

1. Divide

 $n \le c$: Solve the problem directly.

n > c: Divide the problem into k subproblems of sizes $n, \dots, n_k < n$ (k ≥ 2).

2. Conquer

Solve the *k* subproblems in the same way (recursively).

3. Merge

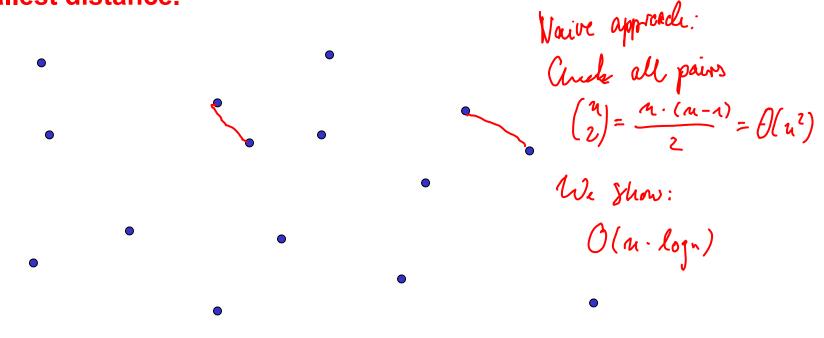
Combine the partial solutions to generate a solution for the original instance.

Analysis T(n): maximum number of steps necessary for solving an instance of size n $T(n) = \begin{cases} a & n \leq c \\ T(n_1) + \dots + T(n_k) & n > c \\ + \text{ cost for divide and merge} \end{cases}$ **Special case:** $k = 2, n_1 = n_2 = n/2$ cost for divide and merge: DM(n)T(1) = aT(n) = 2T(n/2) + DM(n)

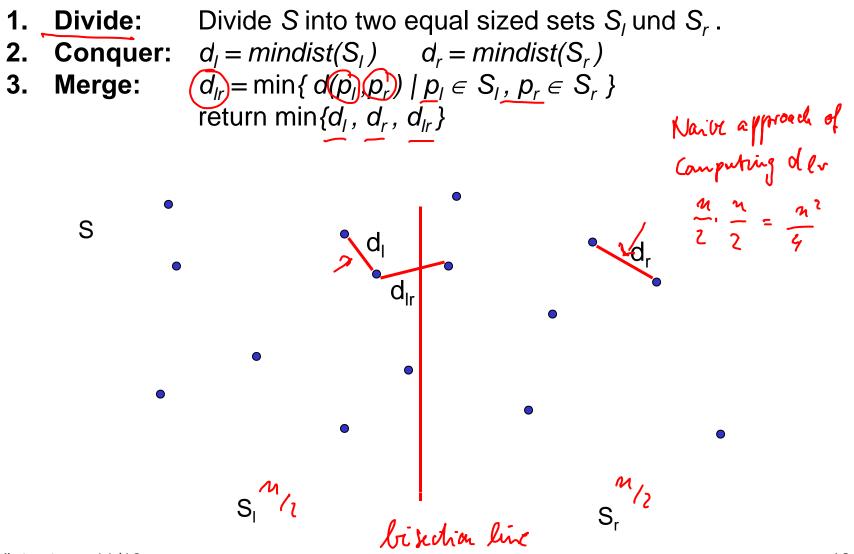
Geometric divide-and-conquer

Closest Pair Problem:

Given a set S of <u>*n* points</u>, find a pair of points with the smallest distance.



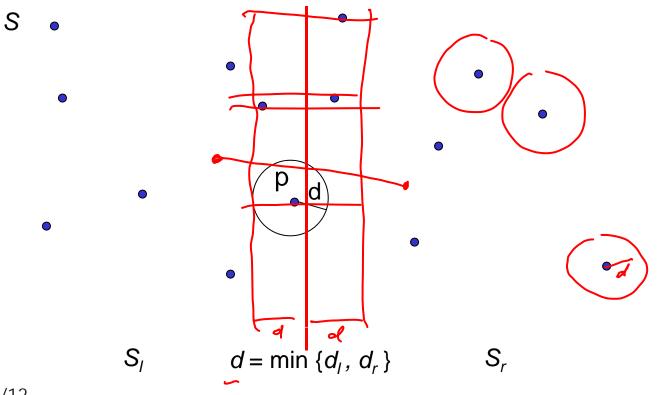
Divide-and-conquer method



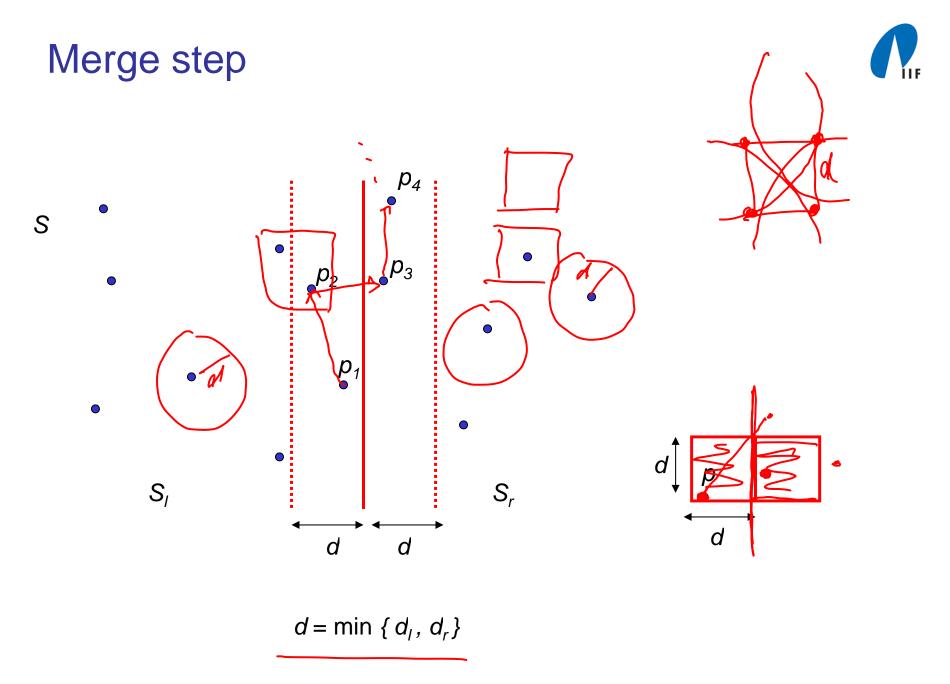
Divide-and-conquer method

- **1. Divide:** Divide S into two equal sets S_1 und S_r .
- **2.** Conquer: $d_l = mindist(S_l)$ $d_r = mindist(S_r)$
- **3. Merge:** $d_{lr} = \min\{d(p_l, p_r) \mid p_l \in S_l, p_r \in S_r\}$ return $\min\{d_l, d_r, d_{lr}\}$

Computation of d_{lr} :

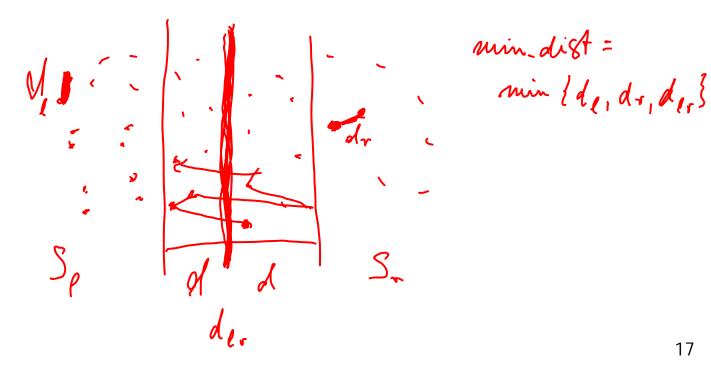


- 1. Consider only points within distance *d* of the bisection line, in the order of increasing y-coordinates.
- 2. For each point *p* consider all points *q* within y-distance at most *d*; there are at most 7 such points.

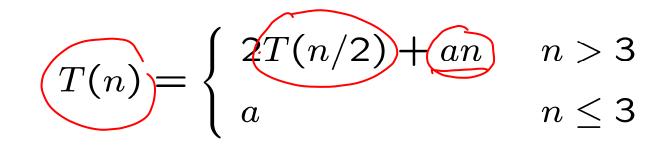


Implementation

- Initially sort the points in S in order of increasing x-coordinates $O(n \log n).$ 111 Se
- Once the subproblems S_l , S_r are solved, generate a list of the points in S in order of increasing y-coordinates (merge sort).



Running time (divide-and-conquer)



- Guess the solution by repeated substitution.
- Verify by induction.

Solution: O(n log n)

Guess by repeated substitution

$$T(n) = \begin{cases} 2T(n/2) + an & n > 3\\ a & n \le 3 \end{cases}$$

$$T(n) = 2 T(\frac{n}{2}) + au = 2 \cdot (2 \cdot T(\frac{n}{4}) + a \cdot \frac{n}{2}) + au$$

= 4 T($\frac{n}{4}$) + 2au
= 4 · (2 · T($\frac{n}{8}$) + a · $\frac{n}{4}$) + 2au = 8 T($\frac{n}{8}$) + 3au
= 8 · (2 · T($\frac{n}{16}$) + a · $\frac{n}{8}$) + 3au
= $16 \cdot T(\frac{n}{16}) + 4au$

Verify by induction

$$T(n) \le an \log n$$
 $T(n) = \begin{cases} 2T(n/2) + an & n > 3 \\ a & n \le 3 \end{cases}$

$$\frac{n=2^{i}}{i=1: \text{ ok } m=2} T(2) = a \leq a \cdot 2 \cdot \log 2 = a \cdot 2 \nu$$
Assume the claim helds for man $i-n$. Show that it also
$$i > 1$$

$$T(2^{i}) = 2 \cdot T(2^{i-1}) + a 2^{i}$$

$$\leq 2 \cdot a 2^{i-n} \cdot \log 2^{i-n} + a \cdot 2^{i}$$

$$= 2^{i} \cdot a \cdot (i-1) + a \cdot 2^{i}$$

$$= a \cdot 2^{i} (i-n+1) = a \cdot 2^{i} \cdot i$$

$$= m \cdot a \cdot \log m \nu$$

Winter term 11/12

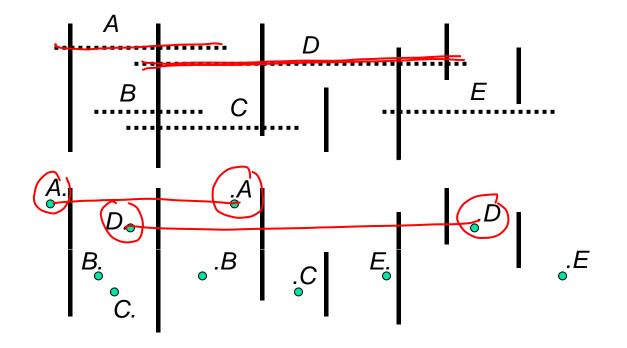
Line segment intersection

Find all pairs of intersecting line segments.

n signents Check each line segnent with each other O(n²) Renning time? O(n. logu) Output sensitive algorithm O(nlogn+k) 4-2 и² 4 k: mule of intersecting <u>n</u> 21 Winter term 11/12

Line segment intersection

Find all pairs of intersecting line segments.



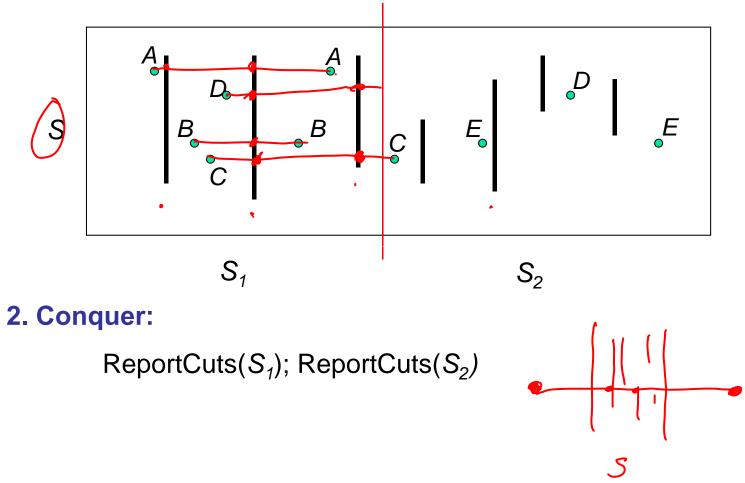
The representation of the horizontal line segments by their endpoints allows for a vertical partitioning of all objects.

- Input: Set S of vertical line segments and endpoints of horizontal line segments.
- **Output:** All intersections of vertical line segments with horizontal line segments, for which at least one endpoint is in S.
- 1. Divide

if |S| > 1then using vertical bisection line *L*, divide *S* into equal size sets S_1 (to the left of *L*) and S_2 (to the right of *L*) else *S* contains no intersections

ReportCuts

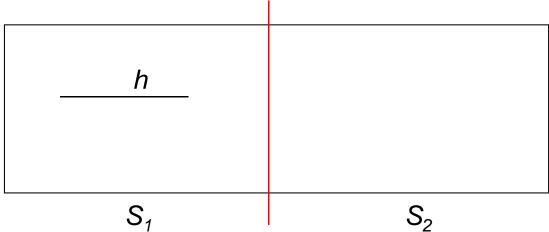
1. Divide:



ReportCuts

3. Merge: ???

Possible intersections of a horizontal line-segment h in S_1

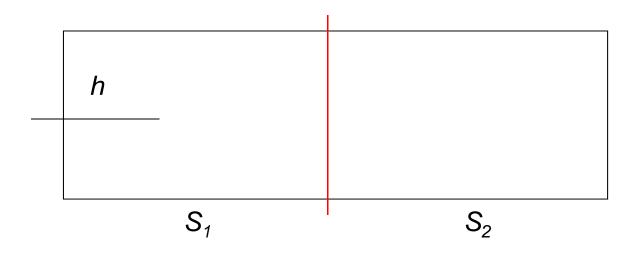


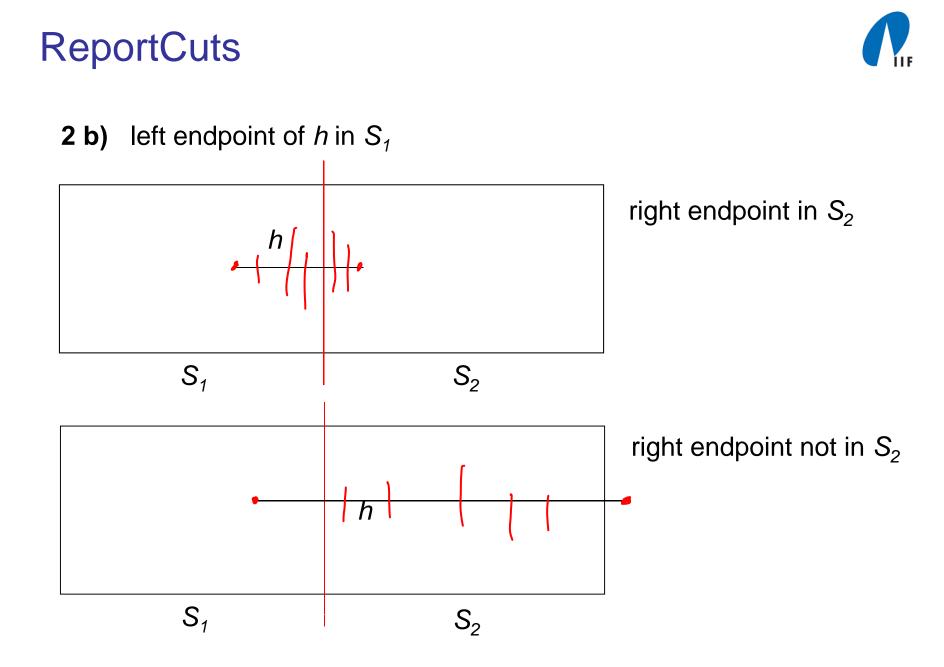
Case 1: both endpoints in S_1

ReportCuts

Case 2: only one endpoint of h in S_1

2 a) right endpoint in S_1



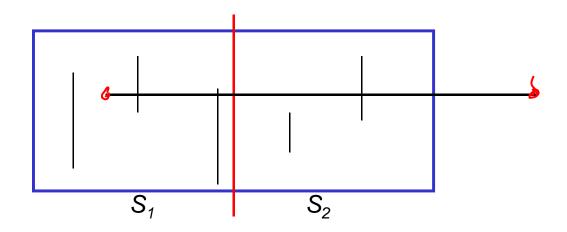


Procedure: ReportCuts(S)

3. Merge:

Return the intersections of vertical line segments in S_2 with horizontal line segments in S_1 , for which the left endpoint is in S_1 and the right endpoint is neither in S_1 nor in S_2 .

Proceed analogously for S_1 .



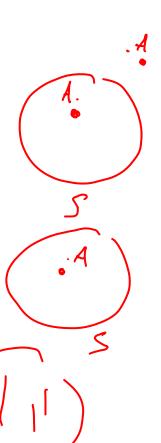
Implementation

Set S

- L(S): y-coordinates of all left endpoints in S, for which the corresponding right endpoint is not in S.
- R(S): y-coordinates of all right endpoints in S, for which the corresponding left endpoint is not in S.

V(S): y-intervals of all vertical line-segments in S.

29



Base cases

S contains only one element s.

Case 1: s = (x, y) is a left endpoint $L(S) = \{y\}$ $R(S) = \emptyset$ $V(S) = \emptyset$

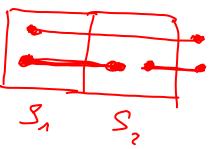
Case 2: s = (x, y) is a right endpoint $L(S) = \emptyset$ $R(S) = \{y\}$ $V(S) = \emptyset$

Case 3: $s = (x, y_1, y_2)$ is a vertical line-segment $L(S) = \emptyset$ $R(S) = \emptyset$ $V(S) = \{ [y_1, y_2] \}$

Merge step

Assume that $L(S_i)$, $R(S_i)$, $V(S_i)$ are known for i = 1,2. $S = S_1 \cup S_2$

$$L(S) = (L(S_1) \land R(S_2)) \cup L(S_2)$$
$$R(S) = (R(S_2) \land L(S_1)) \cup R(S_1)$$



 $V(S) = \bigvee (S_{\lambda}) \lor \lor (S_{\lambda})$

- *L, R*: ordered by increasing y-coordinates linked lists
- V: ordered by increasing lower endpoints linked list