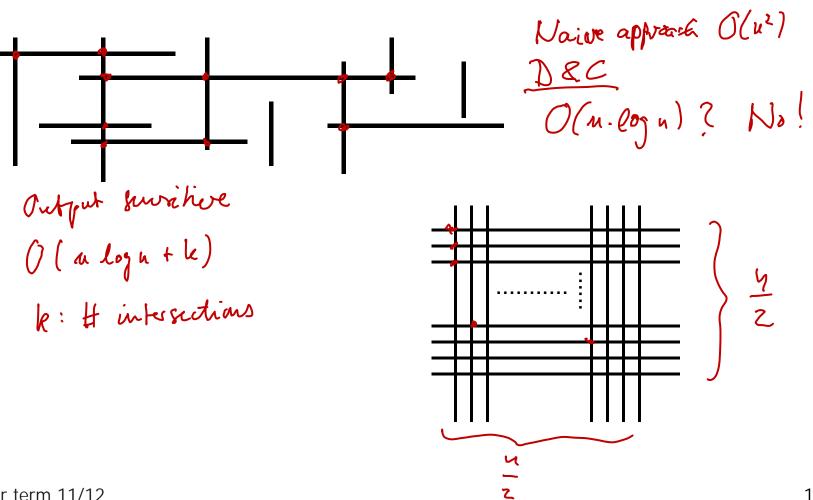
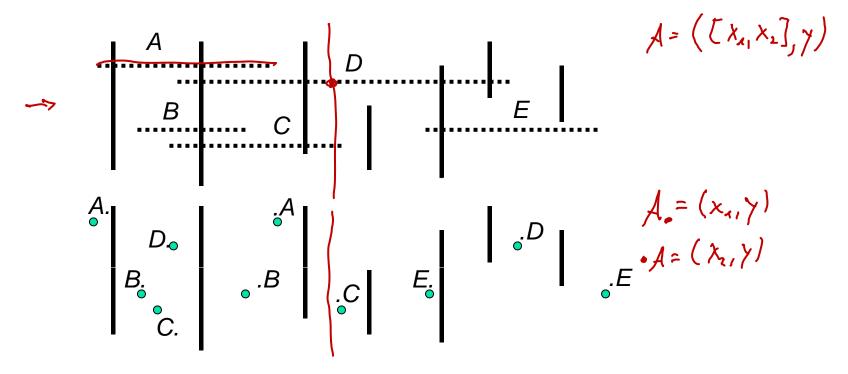
Line segment intersection

Find all pairs of intersecting line segments.

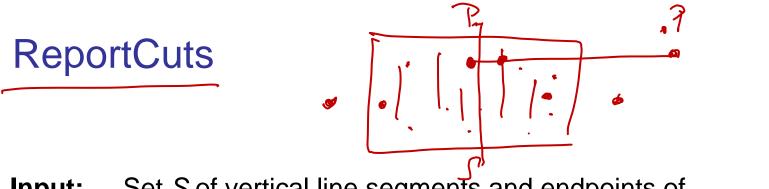


Line segment intersection

Find all pairs of intersecting line segments.



The representation of the horizontal line segments by their endpoints allows for a vertical partitioning of all objects.



- **Input:** Set S of vertical line segments and endpoints of horizontal line segments.
- **Output:** All intersections of vertical line segments with horizontal line segments, for which at least one endpoint is in *S*.

1. Divide

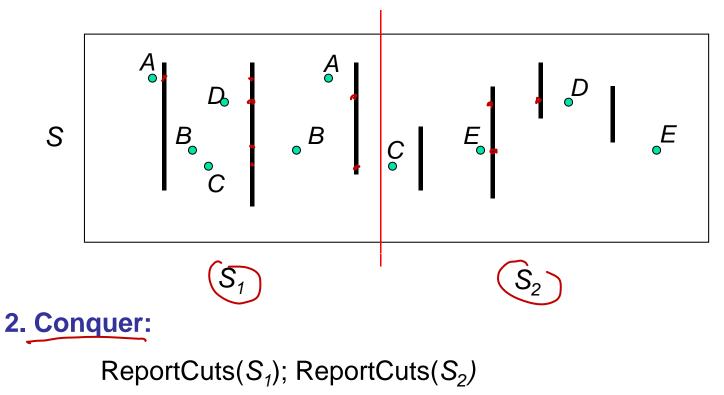
if |*S*| > 1

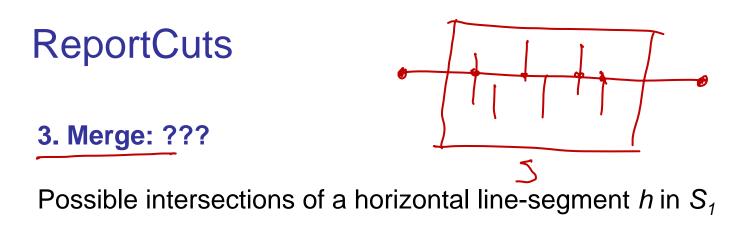
then using vertical bisection line *L*, divide *S* into equal size sets S_1 (to the left of *L*) and S_2 (to the right of *L*)

else S contains no intersections

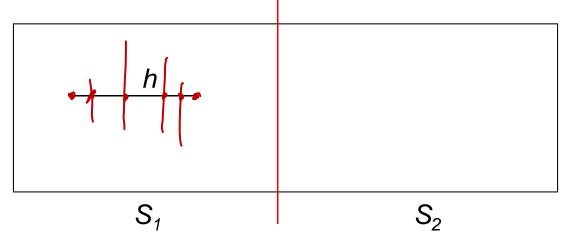
ReportCuts

1. Divide:





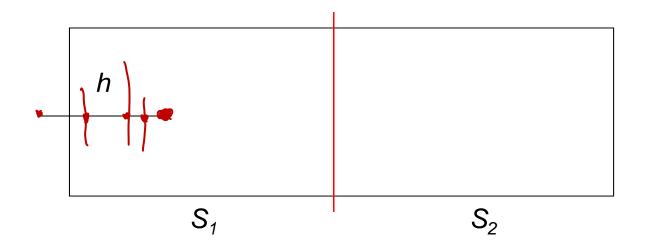
Case 1: both endpoints in S_1



ReportCuts

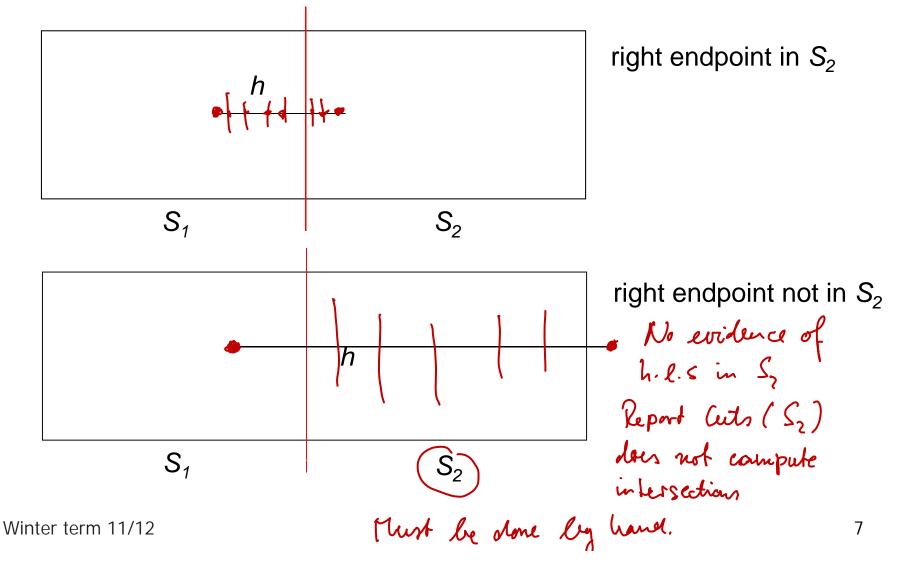
Case 2: only one endpoint of h in S_1

2 a) right endpoint in S_1



ReportCuts

2 b) left endpoint of h in S_1

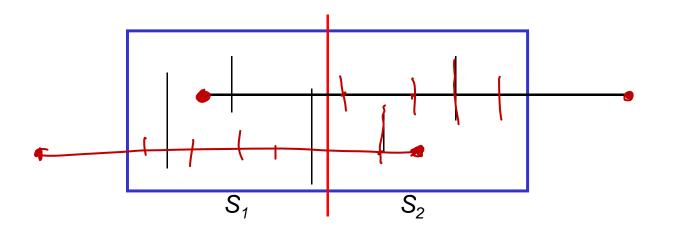


Procedure: ReportCuts(S)

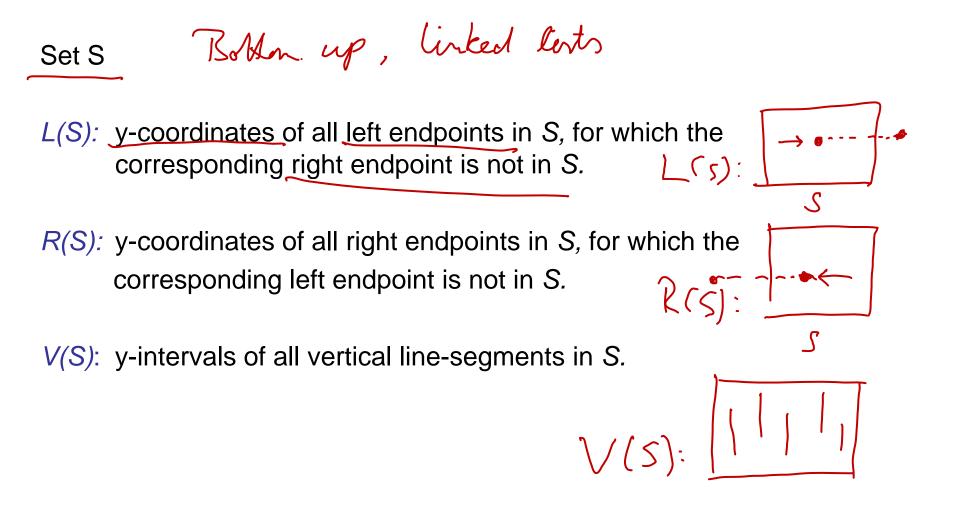
3. Merge:

Return the intersections of vertical line segments in S_2 with horizontal line segments in S_1 , for which the left endpoint is in S_1 and the right endpoint is neither in S_1 nor in S_2 .

Proceed analogously for S_1 .



Implementation



Base cases

S contains only one element s.

Case 1:
$$s = (x, y)$$
 is a left endpoint
 $L(S) = \{y\}$ $R(S) = \emptyset$ $V(S) = \emptyset$

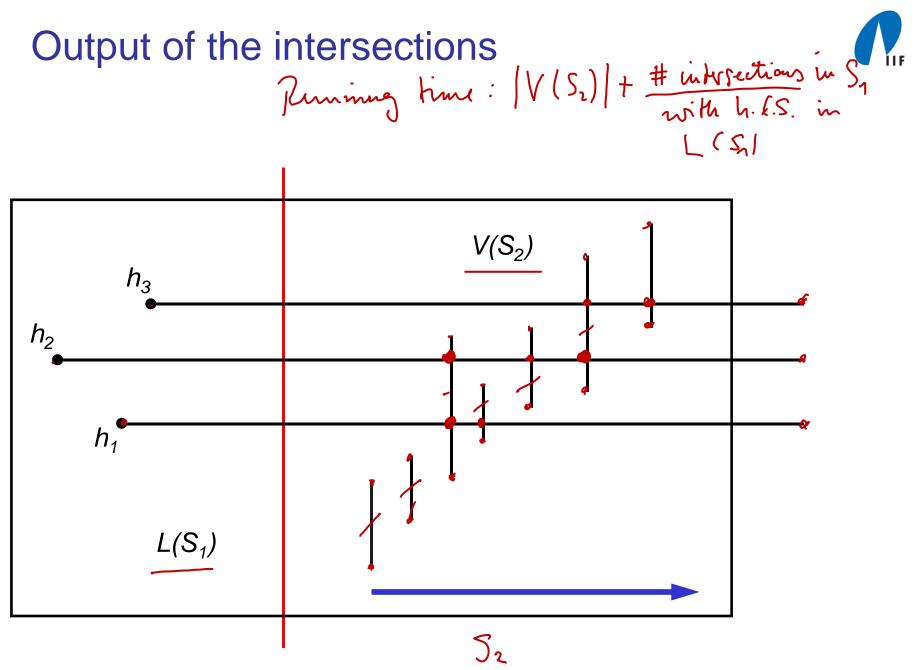
Case 2:
$$s = (x, y)$$
 is a right endpoint
 $L(S) = \emptyset$ $R(S) = \{y\}$ $V(S) = \emptyset$

Case 3: $s = (x, y_1, y_2)$ is a vertical line-segment $L(S) = \emptyset$ $R(S) = \emptyset$ $V(S) = \{ [y_1, y_2] \}$

Merge step

Assume that $L(S_i)$, $R(S_i)$, $V(S_i)$ are known for i = 1,2. $S = S_1 \cup S_2$ $L(S) = \left(\begin{array}{c} L(S_{1}) \setminus R(S_{2}) \\ \cup L(S_{2}) \end{array} \right) \xrightarrow{S_{1}} R(S) = \left(\begin{array}{c} R(S_{2}) \setminus L(S_{1}) \cup R(S_{1}) \end{array} \right) \xrightarrow{S_{1}} R(S_{1}) \xrightarrow{S_{$ υ $V(S) = \bigvee (S_1) \cup \bigvee (S_2)$ S, US, *L*, *R*: ordered by increasing y-coordinates lineas time linked lists ordered by increasing lower endpoints V:

linked list linear time



Winter term 11/12

Initially, the input (vertical line segments, left/right endpoints of horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

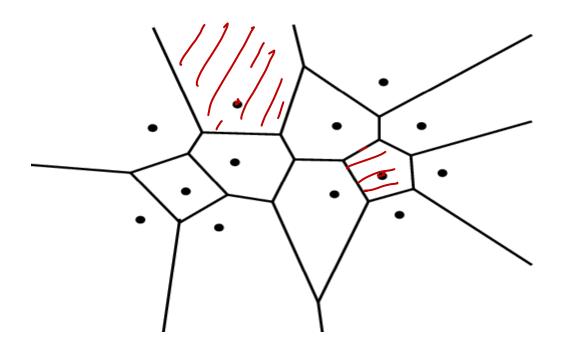
$$T(n) = 2T(n/2) + an + size of output T(1) = O(1)$$

 $O(n \log n + k)$ k = # intersections

Computation of a Voronoi diagram

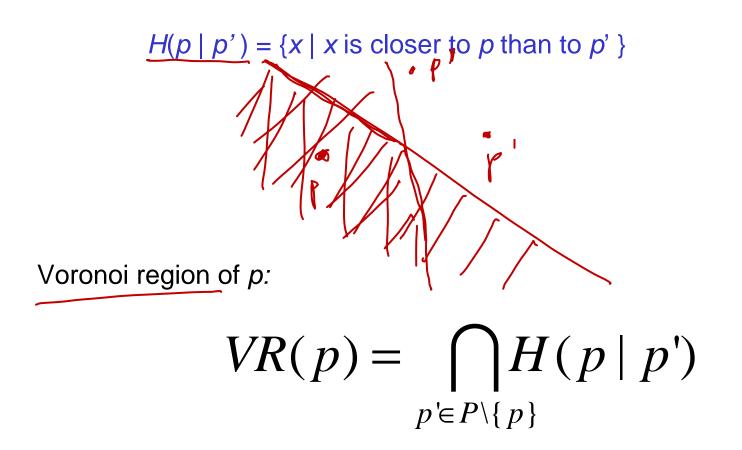
Input: Set of sites.

Output: Partition of the plane into regions, each consisting of the points closer to one particular site than to any other site.



Definition of Voronoi diagrams

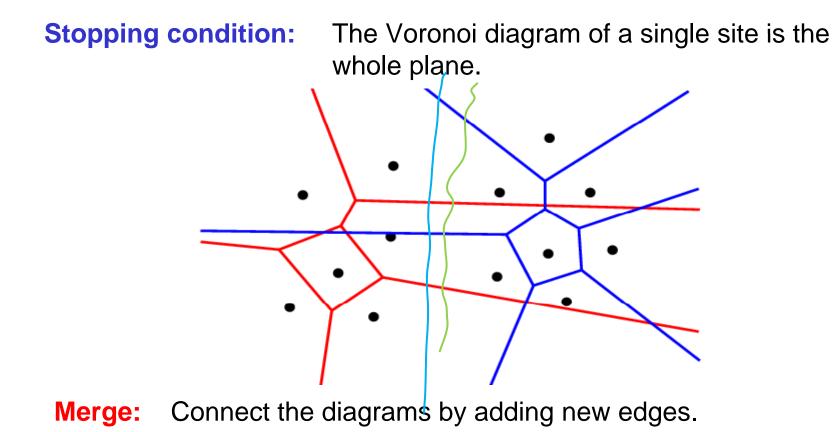
P : Set of sites



Computation of a Voronoi Diagram

Divide: Partition the set of sites into two equal sized sets.

Conquer: Recursive computation of the two smaller Voronoi diagrams.



Computation of a Voronoi diagram

Output: The complete Voronoi diagram.

