Line segment intersection 0

Find all pairs of intersecting line segments.
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Line segment intersection 0

Find all pairs of intersecting line segments.
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The representation of the horizontal line segments by their endpoints
allows for a vertical partitioning of all objects.
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ReportCuts [
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Input:  Set S of vertical line segmenTg and endpoints of
horizontal line segments.

Output: All intersections of vertical line segments with horizontal
line segments, for which at least one endpointisin S.

1. Divide
If|S|>1
then using vertical bisection line L, divide S into equal size
sets S, (to the left of L) and S, (to the right of L)

else S contains no intersections

<
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ReportCuts 0

1. Divide;
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2. Conquer:

ReportCuts(S;); ReportCuts(S,)
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ReportCuts ]\ | 0
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Possible intersections of a horizontal line-segment h in S;

Oﬁ
3. Merge: ?7?? i

Case 1: both endpoints in S;
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ReportCuts 0

Case 2: only one endpoint of hin S;

2 a) right endpointin S,

ek
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ReportCuts 0

2 b) leftendpointof hin S;

right endpoint in S,
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S; S,
\ right endpoint not in S,
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Procedure: ReportCuts(S) 0

3. Merge:

Return the intersections of vertical line segments in S, with
horizontal line segments in S;, for which the left endpoint isin S,
and the right endpoint is neither in S; norin S,.

Proceed analogously for S, .
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Implementation 0

rSetS ,—K%\Mf/ lkedd Lot

L(S): y-coordinates of all left endpoints in S, for which the s e--- |-
corresponding@dpoint IS not in S. )_(g):
S

R(S): y-coordinates of all right endpoints in S, for which the !
corresponding left endpoint is not in S. — ~|~-eé—
?\( <)
§

V(S): y-intervals of all vertical line-segments in S.

\/(3): J { | ’l[
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Base cases 0

e —

S contains only one element s.

Case 1. s =(x,)y) is a left endpoint
LS)=Ut RS)=0 V() =0

Case 2: s =(x,y) is a right endpoint _
LE)=2 RE) =Wy} V(S)=©

Case 3: s=(X,Y¥y,Y,) IS alertical line-segment
LS) = R(S)= V(S)={lyw Y|}

—
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Merge step 0

Assume that L(S;), R(S;), V(S;) are known for i =1,2.
S=5,US,

@ (LGN, \cﬁa_p

R(S) = (1(§>\L<s;))u'z<g3

o= V(2) oV (s,) ,T ag

L, R: ordered by i mcreasmq y-coordinates S”,, " S?
linked lists /Cowuo R
V. ordered by increasing lower endpoints

linked list 7 g Low
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Output of the intersections 0

R # hrgedion s S
Dy b+ [V (5) [+ F bz b 5
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2
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Running time 0

Initially, the input (vertical line segments, left/right endpoints of
horizontal line segments) has to be sorted and stored in an array.

Divide-and-conquer:

LT(H) = 2T(@+ size of output
T=0@1

O(n log n + k) K = # intersections
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Computation of a Voronol diagram 0

Input: Set of sites.

Output: Partition of the plane into regions, each consisting of the
points closer to one particular site than to any other site.

7
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Definition of Voronoi diagrams 0

P : Set of sites

Hp | p’) ={x | xis closer jo p than to p’ }

/

[
Mi region of p: //
VR(p)= (H(p|Pp)

p'e P\{ p}
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Computation of a Voronoi Diagram 0

Divide:  Partition the set of sites into two equal sized sets.
Conquer: Recursive computation of the two smaller Voronoi diagrams.

Stopping condition:  The Voronoi diagram of a single site is the
whole plane.

O

Merge: Connect the diagrams by adding new edges.
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Computation of a Voronol diagram "

Output: The complete Voronoi diagram.

Running time: O(n log n), where n is the number of sites.
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