4. Primality test

Definition:

A natural number $p \ge 2$ is prime iff $a \mid p$ implies that a = 1 or a = p.

We consider primality tests for numbers $n \ge 2$.

Algorithm: Deterministic primality test (naive approach)

Input: Natural number $n \ge 2$ **Output:** Answer to the question "Is *n* prime?" $a \in 1, \dots, \sqrt{n}$

if n = 2 then return true if *n* even then return false for i = 1 to $\sqrt{n}/2$ do ret

Input size O(logn)Running time $O(2^{logn/2})$ not polynomial running time

Running time: $\Theta(\sqrt{n})$ Winter term 11/12

Primality test

Goal: Monte Carlo

Randomized algorithm

- Polynomial running time.
- If it returns <u>"not prime</u>", then *n* is not prime.
- If it returns "prime", then with probability at most p, p>0,
 n is composite.

After k iterations: with probability p^k , n is composite when though reported "prime"

Primality test

Fact: For any odd prime number $p: 2^{p-1} \mod p = 1$. 7 = 65535+1 **Examples:** p = 17, $2^{16} - 1 = 65535 = 17 * 3855$ 2^{16} mid 17 = 1p = 23, $2^{22} - 1 = 4194303 = 23 * 182361$ Debes min. This : In put n Repeated Squaring a" Simple primality test: 1 Compute $\overline{z} = 2^{n-1} \mod n$ $pow(a, u) = \begin{cases} 1 & u = 0 \\ a \cdot pow(a, u - 1) & u \text{ odd} \\ \left[pow(a, \frac{u}{2}) \right]^2 & u \text{ even} \end{cases}$ **2** if z = 1then *n* is possibly prime 3 else *n* is composite 4 $\begin{array}{c}h\\q = \left(\begin{array}{c}h\\a\end{array}\right)^2\end{array}$ Advantage: polynomial running time.

Simple primality test

Definition:

A natural number $n \ge 2$ is a base-2 pseudoprime if n is composite and $2^{n-1} \mod n = 1$.

Example:
$$n = 11 * 31 = 341$$
 is a base - 2 pseudo prime

 $2^{340} \mod 341 = 1$

Randomized primality test

Theorem: (Fermat's little theorem) If p is prime and 0 < a < p, then

 $a^{p-1} \mod p = 1.$

Example: n = 341, a = 3: $3^{340} \mod 341 = 56 \neq 1$

Algorithm: Randomized primality test 1

- 1 Choose *a* in the range [2, *n*-1] uniformly at random
- 2 Compute <u>aⁿ⁻¹ mod n</u>
- **3** if $a^{n-1} \mod n = 1$
- 4 then *n* is probably prime
- 5 else *n* is composite

$$a \mod m = 1$$

Prob($n \text{ is composite but } a^{n-1} \mod n = 1$)? For Cosmichael numbers this probability could be quick large Winter term 11/12

Problem: Carmichael numbers

Definition:

A natural number $n \ge 2$ is a base-*a* pseudoprime if *n* is composite and $a^{n-1} \mod n = 1$.

Definition: A number $n \ge 2$ is a <u>Carmichael number</u> if <u>n</u> is composite and for any <u>a</u> with GCD(a, n) = 1 we have $a^{n-1} \mod n = 1$.

Example:

Smallest Carmichael number: 561 = 3 * 11 * 17

Randomized primality test 2

$$a^{2} = 1 + k \cdot p \qquad k \in \mathbb{N}.$$

$$a^{2} = 1 + k \cdot p \qquad k \in \mathbb{N}.$$

$$a^{2} - 1 = k \cdot p \qquad (a - 1) \cdot (a + 1) = k \cdot p \qquad (a - 1) \cdot (a - 1) = k \cdot p \qquad (a - 1) \cdot (a - 1) = k \cdot p \qquad (a - 1) \cdot (a - 1) = k \quad (a - 1) \quad ($$

Definition: A number <u>a</u> is a non-trivial square root mod <u>n</u> if $a^2 \mod n = 1$ and $a \neq 1, n-1$.

Example:
$$n = 35$$

 $6^2 \mod 35 = 1$
 $36 \mod 35 = 7$
 $6 \neq 1, 6 \neq 36$

Idea:

While computing a^{n-1} , where 0 < a < n is chosen uniformly at random, check if a non-trivial square root mod *n* exists.

Method for computating an: Ry

Case 1: [*n* is even] $a^n = a^{n/2} * a^{n/2}$

Case 2: [*n* is odd] $a^n = a^{(n-1)/2} * a^{(n-1)/2} * a$

Example:

 $a^{62} = (a^{31})^2$ $a^{31} = (a^{15})^2 * a$ $a^{15} = (a^7)^2 * a$ $a^7 = (a^3)^2 * a$ $a^3 = (a)^2 * a$

Running time: O(log²aⁿ log n)

boolean isProbablyPrime;

global variable, initially true

power(int a, int p, int n){

computes a p mod n

/* computes $a^p \mod n$ and checks if a number x with $x^2 \mod n = 1$ and $x \neq 1$, n-1 occurs during the computation */

 $x = power(a, p/2, n); \qquad x = a \qquad mod u$ result = $(x * x) % n; \qquad result = x^2 \mod n$

/* check if $x^2 \mod n = 1$ and $x \neq 1$, n-1 */

if (result == 1 &&
$$x = 1 & x = n - 1$$
)
isProbablyPrime = false; $x = n - 1$)

if
$$(p \% 2 == 1)$$

result = $(a * result) \% n;$

```
return result;
```

```
Running time: O(\log^2 n \log p)
```

polynomial !

}

Randomized primality test 2

primeTest(int n) {

/* executes the randomized primality test for a chosen at random */

a = random(2, *n*-1);

```
isProbablyPrime = true;
```

```
result = power(a, n-1, n);
```

```
penelt = a mod n
```

```
if (result != 1 || !isProbablyPrime)
return false;
else return true;
```

}

Winter term 11/12

Randomized primality test 2

Theorem:

If *n* is composite, then there are at most

$$\frac{n-9}{4} \quad \approx \quad \frac{\pi}{4}$$

numbers 0 < a < n, for which the algorithm primeTest fails.

Public-Key Cryptosystems

Winter term 11/12

Secret key cryptosystems

Parties want to etchange secure menages

Traditional encryption of messages

Disadvantages:

- 1. Prior to transmission of the message, the key k has to be exchanged between the parties A und B.
- 2. For encryption of messages between *n* parties, n(n-1)/2 keys are required. $\theta(u^2)$

lærge number of keyp næd exchange via a sæfe channel

Secret key encryption systems

Advantage:

Encryption and decryption are fast.

Electronic security services

Guarantees:

- Confidentiality of the transmission
- Integrity of the data
- Authenticity of the sender
- Liability of the transmission

Frame work

Diffie and Hellman (1976)

Idea: Each participant A holds two keys:

- 1. A <u>public</u> key \underline{P}_A , accessible to all other participants.
- 2. A private key S_A that is kept secret.

Public-key cryptosystems

D = Set of all valid messages,e.g. set of all bitstrings of finite length

$$\underbrace{P_{A}(), S_{A}(): D \xrightarrow{1-1} D}_{\frown}$$

1. $P_A()$, $S_A()$ efficiently computable

$$D = \{0, 1\}^*$$

2. $S_A(\underline{P_A(M)}) = M \text{ and } \underline{P_A(S_A(M))} = M$

concernes

3. $S_A()$ is not computable from $P_A()$ (with realistic effort)

Encryption in a public-key system

A sends a message M to B: Mia

Winter term 11/12