

Algorithms Theory

Data Structure 04 - Treaps Tree Heap Dictionary problem Randomization

Dr. Alexander Souza

The dictionary problem

Given: Universe (U, <) of keys with a total order

Goal: Maintain set $S \subseteq U$ under the following operations

- Search(x, S): Is $\underline{x \in S}$?
- Insert(x,S): Insert x into S if not already in S.
- Delete(x, S): Delete x from S.

element
$$x = \begin{cases} kuy \in U \\ satelik deta \end{cases}$$

Extended set of operations

- Minimum(S): Return smallest key.
- Maximum(S): Return largest key.
- List(S): ullet

Union (S_1, S_2) : Merge S_1 and S_2 . Condition: $\forall x_1 \in S_1$, $x_2 \in S_2$: $x_1 < x_2$

Output elements of S in increasing order of key.

• Split(S, x, S_1, S_2): Split S into S_1 and S_2 .

 $\forall x_1 \in S_1$, $x_2 \in S_2$: $x_1 \leq x$ and $x < x_2$

Known solutions

Drawback: Sequence of insertions may lead to a linear list a, b, c, d, e, f Problem : Search has linear running time

Height balanced trees: <u>AVL trees</u>, (a,b)-trees
 Drawback: Complex algorithms or high memory requirements.
 AVL: height (LST) - height (RST) ≤ 1 complex (a,b) - tree: a ≤ # children ≤ L Space overhead follogn)
 Goal: simple + efficient debastructure

4

Approach for randomized search trees

 $\overline{1}_{a}$ \mathcal{A}_{a} If *n* elements are inserted in random order into a binary search tree, the expected depth is 1.39 log *n*.

Idea: Each element x is assigned a priority chosen uniformly at random prio(x) $\in R$

The goal is to establish the following property.

(*) The search tree has the structure that would result if elements were inserted in the order of their priorities.

Not obvious

Treaps (Tree + Heap)

Definition: A treap is a binary tree.

Each node contains one element x with $\underline{\text{key}(x) \in U}$ and $\underline{\text{prio}(x) \in R}$. The following properties hold.

Search tree property
 For each element x:

- elements y in the left subtree of x satisfy: key(y) < key(x)
- elements y in the right subtree of x satisfy : key(y) > key(x)
- Heap property min hap
 For all elements x,y:
 If y is a child of x, then prio(y) > prio(x).
 All priorities are pairwise distinct.

Do Treaps scift?

Example

Treap uniqueness

Lemma: For elements $x_1, ..., x_n$ with key(x_i) and prio(x_i), there exists a unique treap. It satisfies property (*).

Search for an element Search(e, S)

Search for element with key k

 $\overline{(r)}$

RST

V current verkx

1 v := root;

- 2 while $v \neq$ nil do
- 3 **case** key(v) = k: stop; "element found" (successful search)

4
$$key(v) < k : v := RightChild(v);$$

5
$$\operatorname{key}(v) > k : v := \operatorname{LeftChild}(v);$$

- 6 endcase;
- 7 endwhile;

8 "element not found" (unsuccessful search)

Running time: O(# elements on the search path)