

Algorithms Theory

04 - Treaps

Dr. Alexander Souza

The dictionary problem

Given: Universe (U, <) of keys with a total order

Goal: Maintain set $S \subseteq U$ under the following operations

- Search(x, S): Is $x \in S$?
- Insert(x,S): Insert x into S if not already in S.
- Delete(*x*,*S*): Delete *x* from *S*.

Extended set of operations

- Minimum(S): Return smallest key.
- Maximum(S): Return largest key.
 - Output elements of S in increasing order of key.
- Union (S_1, S_2) : Merge S_1 and S_2 .

List(S):

ullet

Condition: $\forall x_1 \in S_1$, $x_2 \in S_2$: $x_1 < x_2$

• Split(S, x, S_1, S_2): Split S into S_1 and S_2 .

 $\forall x_1 \in S_1, x_2 \in S_2$: $x_1 \leq x$ and $x < x_2$

Known solutions

• Binary search trees

Drawback: Sequence of insertions may lead to a linear list a, b, c, d, e, f

• **Height balanced trees:** AVL trees, (a,b)-trees Drawback: Complex algorithms or high memory requirements. Approach for randomized search trees

If *n* elements are inserted in random order into a binary search tree, the expected depth is $1.39 \log n$.

Idea: Each element x is assigned a priority chosen uniformly at random $prio(x) \in R$

The goal is to establish the following property.

(*) The search tree has the structure that would result if elements were inserted in the order of their priorities.

Treaps (Tree + Heap)

Definition: A treap is a binary tree.

Each node contains one element x with $\underline{\text{key}(x) \in U}$ and $\underline{\text{prio}(x) \in R}$. The following properties hold.

Search tree property

For each element x:

- elements y in the left subtree of x satisfy: key(y) < key(x)
- elements y in the right subtree of x satisfy : key(y) > key(x)
- Heap property

For all elements x, y: If y is a child of x, then prio(y) > prio(x). All priorities are pairwise distinct.

Example

7

Lemma: For elements $x_1, ..., x_n$ with key(x_i) and prio(x_i), there exists a unique treap. It satisfies property (*).

Proof:

n=1: ok *n*>1:

Search for an element

Search for element with key k

1 v := root;

- 2 while $v \neq nil$ do
- 3 **case** key(v) = k: stop; "element found" (successful search)
- 4 key(v) < k : v := RightChild(v);

5
$$\operatorname{key}(v) > k : v := \operatorname{LeftChild}(v);$$

6 endcase;

8 "element not found" (unsuccessful search)

Running time: O(# elements on the search path)

Analysis of the search path

Elements x_1, \ldots, x_n x_i has *i*-th smallest key Let *M* be a subset of the elements.

 $P_{min}(M)$ = element in M with lowest priority

$$\begin{array}{c} \begin{array}{c} \lambda_{1}, \ldots, \lambda_{m}, \ldots, \lambda_{m} \\ \hline \\ \textbf{Lemma:} \\ \textbf{a) Let } i < m. \quad \underbrace{x_{i} \text{ is ancestor of } x_{m}}_{\textbf{b) Let } \text{m} < i. \quad x_{i} \text{ is ancestor of } x_{m} \\ \end{array} \begin{array}{c} \begin{array}{c} \hline \\ \textbf{figstarrow} \\ \textbf{fig$$

b)

Analysis of the search path

Proof: a) (Let *i*<*m*.
$$x_i$$
 is ancestor of x_m iff $P_{min}(\{x_i,...,x_m\}) = x_i$)
"=" Let $\widehat{x_i} = P_{min}(\{x_i,...,x_m\})$. Show: $x_i = x_j$
Suppose: $x_i \neq x_j$
(myindus the Scasch path when x_j is insuched.
As before any $x_e \in \{x_i,...,x_m\}$ treates the same search path
as x_j
 x_j is an center of x_e

$$\begin{array}{c} \underline{\text{Case 1: }} x_{j} = x_{m} \implies X \text{ m in an arter of } X_{l} \implies X \text{ m in an arter of } X_{l} \implies X \text{ m in an arter of } X_{l} \implies X \text{ m in an arter of } X_{l} \implies X \text{ m in an arter of } X_{l} \implies X_{l} \implies$$

Analysis of the 'Search' operation

Let *T* be a treap with elements $x_1, ..., x_n$ x_i has *i*-th smallest key *n*-th Harmonic number: $H_n = \sum_{k=1}^n 1/k \cong l_m n$ Lemma: $\underbrace{\sum_{k=1}^n k_m + l_m}_{m + l_m - m + 1} = O(l_m n)$ $m \leq n$

(2) Unsuccessful search : Let \underline{m} be the number of keys that are smaller than the search key k. The expected number of nodes on the search path is $H_m + H_{n-m}$. $\neq O(log_u)$

Analysis of the 'Search' operation

Proof: Part 1 fuccinful search $\overrightarrow{X_{m,i}} = \begin{cases} 1 & x_i \text{ is ancestor of } x_m \\ 0 & \text{otherwise} \end{cases}$

 $X_{m} = \# \text{ nodes on the path from the root to } x_{m} (\text{incl. } x_{m})$ $\sum_{i=1}^{\infty} \sum_{i=n}^{\infty} x_{m,i} = X_{m,m} + \sum_{i < m} x_{m,i} + \sum_{i < m} x_{m,i}$ $X_{m} = 1 + \sum_{i < m} X_{m,i} + \sum_{i > m} X_{m,i}$ $\lim_{i < m} \int f \text{ expectation}$ $E[X_{m}] = 1 + E\left[\sum_{i < m} X_{m,i}\right] + E\left[\sum_{i > m} X_{m,i}\right]$ $= A + \sum_{i < m} \mathbb{E}[X_{m,i}] + \sum_{i > m} \mathbb{E}[X_{m,i}] = A + \sum_{i < m} \mathbb{E}[X_{m,i}] + \sum_{i > m} \mathbb{E}[X_{m,i}] = A + \sum_{i < m} \mathbb{E}[X_{m,i}] = A + \sum_{i < m} \mathbb{E}[X_{m,i}] + \sum_{i > m} \mathbb{E}[X_{m,i}] = A + \sum_{i < m} \mathbb{E}[X_{m,i}] = A + \sum$

Analysis of the 'Search' operation

$$\begin{array}{c}
1 \\
\hline i < m; \\
Fr \left[x_{i} = P_{min} \left(\left\{ x_{i}, \dots, x_{m} \right\} \right) \right] = \frac{1}{1\left\{ x_{i}, \dots, x_{m} \right\} \right]} = \frac{1}{m - i + 1}$$

$$\begin{array}{c}
II \ Lem haa \\
E[(X_{m,i})] = \operatorname{Prob}[x_{i} \text{ is ancestor of } x_{m}] = \frac{1}{(m - i + 1)}
\end{array}$$

All elements in $\{x_i, ..., x_m\}$ have the same probability of being the one with the smallest priority.

Prob[
$$P_{min}(\{x_i,...,x_m\}) = x_i$$
] = 1/(*m*-*i*+1)

$$(i > m:)$$

 $E[X_{m,i}] = 1/(i - m + 1)$

Analysis of the 'Search' operation

Part 2 follows analogously

Winter Term 11/12

Inserting a new element x

- 1. Choose prio(x).
- 2. Search for the position of *x* in the tree.

Rotations

The rotations maintain the search tree property and restore the heap property.