Algorithms Theory
04 - Treaps

Dr. Alexander Souza

The dictionary problem

Given: Universe (U,<) of keys with a total order

Goal: Maintain set S < U under the following operations
o Search(x,S): Isx € S?

o Insert(x,S): Insertxinto S if not already in S.
 Delete(x,S): Delete x from S.

Winter Term 11/12

)

Extended set of operations

e Minimum(S): Return smallest key.
¢ Maximum(S): Return largest key.
o List(S): Output elements of S in increasing order of key.

e Union(S,,S,): Merge S; and S,

Condition: VX, € S;,X,€ S0 X <X,
o Split(S,x,5,,S,): SplitSinto S; and S,.

VX, €eS;,%X€eS, x<x and x<Xx,

Winter Term 11/12

Known solutions

 Binary search trees

Drawback: Sequence of insertions may lead to
alinearlist a, b, c, d, e, f

« Height balanced trees: AVL trees, (a,b)-trees
Drawback: Complex algorithms or high memory requirements.

Winter Term 11/12 4

)

Approach for randomized search trees

If n elements are inserted in random order into a binary search tree,
the expected depth is 1.39 log n.

Idea: Each element x is assigned a priority chosen uniformly at random
prio(x) e R

The goal is to establish the following property.

(*) The search tree has the structure that would result if elements
were inserted in the order of their priorities.

Winter Term 11/12 S

)

Treaps (Tree + Heap)

Definition: A treap is a binary tree.
Each node contains one element x with key(x) € U and prio(x) € R.

The following properties hold.

X
4,
= Search tree property <)
For each element x: (<T ©5T

- elements y in the left subtree of x satisfy: key(y) < key(x)
- elements y in the right subtree of x satisfy : key(y) > key(x)

= Heap property pLaCx)
: ~
Forlall elements X,Y: | | ari (7)@P
If y is a child of x, then prio(y) > prio(x).
All priorities are pairwise distinct.

—

Winter Term 11/12 6

Example

key a b c d e f g

priority 3 7 4 1 5 2 6

Winter Term 11/12

)

Treap unigueness

Lemma: For elements X, ..., X, with key(x;) and prio(x;), there exists
a unigue treap. It satisfies property (*).

Proof:

n=1: ok
n>1:

Winter Term 11/12 8

Search for an element

Winter Term 11/12 9

Search for element with key k

V .= root;
while v # nil do
case key(v) = k: stop; “element found” (successful search)
key(v) < k:v:=RightChild(v); s
key(v) > k : v:= LeftChild(v); /EF\
endcase;

endwhile;
“element not found” (unsuccessful search)

00O N O O b WD B

Running time: O(# elements on the search path)

Winter Term 11/12 10

)

Analysis of the search path
kegtwé }% (%) ¢ .. <)(e? (¥w)

Elements X, ..., X, X; has i-th smallest key
Let M be a subset of the elements.

Pmin(M) = element in M with lowest priority

Xaaweey Xy oo, X e Xy

1!

Lemma:
a) Leti<m. x;is ancestor of X, Iff Pi,({X;,....Xpn}) =X
b) Let m<i. Xx;is ancestor of X, iff P i .({Xy,---,X}) = X

Winter Term 11/12 11

)

Analysis of the search path
kju,,) Z)wd()q) A }wa (xa)

Proof: a) . Elements are inserted in order of increasing
priorities.

|:>min({xi,___,Xm}):xi = X is inserted first among {X;,...,X.}.

When x; is inserted, the tree contains only keys k with
k < key(x) or k> key(x.)

b harawn He ot Saash pakle af ;. .

X
ix‘, X4 L %%

s

key(x) > k key(x) <k
Xz'/)(e Xl:,)fC kk*a(xc)élv?()(m)<k

}603 (%))Lu}(h)>é

Winter Term 11/12 12

)

Analysis of the search path

Pioof: a) (Leti<m. x;is ancestor of X, iff P ,({X;-.-.X}) = X))

Let(})= Prin({X;,- - Xm}). Show: x; =
Suppose Xj # X

Vi2 M““ ""W"(} X ¢ € (kc(" Xw§ N, }’L* Sorme Mv(xxraw
X
J

Case L =X, = & w b am b of KD Ry @ docodfel o X i

: fony (1) 4 kg (x;) ¥
ase 2: X, # Xp, (x.) > -
iy) lwd (> S
Part b) follows analogously. — x: { mé ‘WW’*%X ol K,
“ qi = ST

Winter Term 11/12 13

)

Analysis of the ‘Search’ operation

Let T be a treap with elements x,, ..., X, X has i-th smallest key
n
n-th Harmonic number: H = Zk:lll k= Luwn

Lemma: é‘ﬁ’é&":‘é”ﬁ@rﬂ*

@ Successful search: The expected number of nodes on the path
tox,isH,+H ..,—1 = O(,&Jh) "2

——

aT—

@ Unsuccessful search : Let m be the number of keys that are smaller
than the search key k. The expected number of nodes on the
search path is H, + H, . < 0 (fog) -

Winter Term 11/12 14

)

Analysis of the ‘Search’ operation

Proof: Part1 Jwecenfmd Scovh Z‘i\
” _{1 X isancestor of x_ X

0 otherwise

X = # nodes on the path from the root tox (incl. x,,)
T Ky = K v T X 4 3 X,

“ (77 L“""
\/

. \/ \/
A, =1+ Z Ami + Z Ami
l<m I>m

Limtory of oxpectaa
E[X, J=1+E > X.: [+E > X,

towm

=

L i<m] L i>m

= A+ 2 EBXuwi) ¢ T BT]_4),&?:[%“ e

L(L«

Winter Term 11/12 h e FJ ([Xz 4] 15

Analysis of the ‘Search’ operation

4 y ‘ |‘|r

_/——————_A—"/

A (Pw(g)(f/‘“/km})jg X K ’/m-{et/(
@ Pl - TN
E[= Prob| x. Isancestor of x_|=1/(m—-1+1)

All elements in {x, ..., X,} have the same probability of being the one
with the smallest priority.

Prob[P, .. ({X,....x.}) = x] = 1/(m-
i+1)

1>m:

E[X ..]=1/(i - m+1)

Winter Term 11/12 16

Analysis of the ‘Search’ operation

E[X,]=1+) +>
i<m _|+1 |>m|_m+1
A, 4 +‘.-+i i-‘ - —L—‘
M W q z 2 h—m+ A
1 1 1 1
=1+— + ottt
2.2 n—-m+1
< , o _
Hu—wu-/\ — 1
:Hm+Hn—m+1_1

Part 2 follows analogously

Winter Term 11/12 17

Inserting a new element x

1. Choose prio(x).
2. Search for the position of x in the tree.

o ()
/ r\/ ! Ltt“f’("afwl?f conle e
3. Insert x as a leaf. X aris (%) Celaheof
4. Restore the heap property.

while prio(parent(x)) > prio(x) do
if X is left child then RotateRight(parent(x))
else RotateLeft(parent(x));

endif
endwhile;

18

Winter Term 11/12

Rotations

rﬂo ()

RotateRight

RotatelLeft

Shnfies G free propaty dearcde e propaity & 2aliafid

The rotations maintain the search tree property and
restore the heap property.

Winter Term 11/12 19

