
Analysis of the ‘Search’ operation

Let T be a treap with elements x1 xn xi has i-th smallest keyLet T be a treap with elements x1, …, xn xi has i th smallest key

n-th Harmonic number: ∑ =
= n

kn kH
1

/1

Lemma:
1 S f l h Th t d b f d th th

k 1

1. Successful search: The expected number of nodes on the path
to xm is Hm + Hn-m+1 – 1.

2. Unsuccessful search : Let m be the number of keys that are smaller
than the search key k. The expected number of nodes on the
search path is H + Hsearch path is Hm + Hn-m.

1Winter Term 11/12

Analysis of the ‘Search’ operation

Proof: Part 1

⎩
⎨
⎧= otherwise0

 ofancestor is 1
,

mi
im

xxX
⎩ otherwise0

X = # nodes on the path from the root to x (incl x)Xm # nodes on the path from the root to xm (incl. xm)

∑∑ ++ XXX 1 ∑∑
><

++=
mi

im
mi

imm XXX ,,1

⎥
⎦

⎤
⎢
⎣

⎡+⎥
⎦

⎤
⎢
⎣

⎡+= ∑∑
i

im
i

imm XEXEXE ,,1][

2Winter Term 11/12

⎦⎣⎦⎣ >< mimi

Analysis of the ‘Search’ operation

i < m i < m ::

)1(1/] ofancestor is Prob[][, +−== imxxXE miim

All elements in {x x } have the same probability of being the oneAll elements in {xi, …, xm} have the same probability of being the one
with the smallest priority.
Prob[Pmin({xi,…,xm}) = xi] = 1/(m-
i 1)i+1)

i > m i > m ::
)1(1/][, +−= miXE im

3Winter Term 11/12

Analysis of the ‘Search’ operation

111][++ ∑∑XE
11

1][
+−

+
+−

+=
><
∑∑

mimi
m miim

XE

11111 ++++++=
1

...
22

... 1
+−

++++++=
mnm

11 −+= +−mnm HH

4Winter Term 11/12

Part 2 follows analogouslyPart 2 follows analogously

Inserting a new element x

1. Choose prio(x).1. Choose prio(x).
2. Search for the position of x in the tree.

3. Insert x as a leaf.
4 Restore the heap property4. Restore the heap property.

while prio(parent(x)) > prio(x) do
if x is left child then RotateRight(parent(x))

else RotateLeft(parent(x));
endif

endwhile;

5Winter Term 11/12

;

Rotations

R t t Ri htR t t Ri hty

RotateLeftRotateLeft

RotateRightRotateRighty x

RotateLeftRotateLeft

C

yx

AC A

BA B C

The rotations maintain the search tree property and The rotations maintain the search tree property and

6Winter Term 11/12

p p yp p y
restore the heap property.restore the heap property.

Deleting an element x

1 Find x in the tree1. Find x in the tree.
2. while x is not a leaf do

u := child with smaller priority;
if u is left child then RotateRight(x))

else RotateLeft(x);
difendif;

endwhile;
3. Delete x;3. Delete x;

7Winter Term 11/12

Rotations

RotateRightRotateRightx u

RotateLeftRotateLeft
xu

C A

BA B C

8Winter Term 11/12

Analysis of ‘Insert’ and ‘Delete’ operationsAnalysis of Insert and Delete operations

Lemma: The expected running time of insert and delete operationsLemma: The expected running time of insert and delete operations
is O(log n). The expected number of rotations is 2.

Proof: Analysis of insert (delete is the inverse operation)
rotations = depth of x after being inserted as a leaf (1)

d th f ft th t ti (2)- depth of x after the rotations (2)
Let x = xm .
(2) Expected depth is Hm + Hn m+1 – 1.(2) Expected depth is Hm Hn-m+1 1.
(1) Expected depth is Hm-1 + Hn-m + 1.

The tree contains n-1 elements, m-1 of them being smaller.

rotations = Hm-1 + Hn-m + 1 – (Hm + Hn-m+1 – 1) < 2

9Winter Term 11/12

Extended set of operations

n = number of elements in treap T.p

• Minimum(T): Return the smallest key. O(log n)
M i (T) R t th l t k O(l)• Maximum(T): Return the largest key. O(log n)

• List(T): Output elements of S in increasing order. O(n)

• Union(T1,T2): Merge T1 and T2.
Condition: ∀ x ∈ T x ∈ T : key(x) < key(x)Condition: ∀ x1 ∈ T1 , x2 ∈ T2: key(x1) < key(x2)

• Split(T,k,T1,T2): Split T into T1 and T2.
∀ x1 ∈ T1 , x2 ∈ T2: key(x1) ≤ k and k < key(x2)

10Winter Term 11/12

The ‘Split’ operation

Split(T k T1 T2): Split T into T1 and T2Split(T,k,T1,T2): Split T into T1 and T2.
∀ x1 ∈ T1 , x2 ∈ T2: key(x1) ≤ k and key(x2) > k

W.l.o.g. key k is not in T.
Otherwise delete the element with key k and re-insert it into T1 after the
split operationsplit operation.

1. Generate a new element x with key(x)=k and prio(x) = -∞.
2. Insert x into T.
3. Delete the new root. The left subtree is T1, the right subtree is T2.

11Winter Term 11/12

The ‘Union’ operation

Union(T1 T2): Merge T1 and T2Union(T1,T2): Merge T1 and T2.
Condition: ∀ x1 ∈ T1 , x2 ∈ T2: key(x1) < key(x2)

1. Determine key k with key(x1) < k < key(x2)1. Determine key k with key(x1) k key(x2)
for all x1 ∈ T1 and x2 ∈ T2.

2. Generate element x with key(x)=k and prio(x) = -∞.
3. Generate treap T with root x, left subtree T1 and

right subtree T2.
4 Delete from T4. Delete x from T.

12Winter Term 11/12

Analysis

Lemma: The expected running time of the operations Union
and Split is O(log n).

13Winter Term 11/12

Implementation

Priorities from [0 1)Priorities from [0,1)

Priorities are used only when two elements are compared to find out
which of them has the higher priority.

In case of equality extend both priorities by bits chosen uniformly atIn case of equality, extend both priorities by bits chosen uniformly at
random until two corresponding bits differ.

p1 = 0.010111001 p1 = 0.010111001011
p2 = 0.010111001 p2 = 0.010111001010

14Winter Term 11/12

