
Analysis of the ‘Search’ operation

Let T be a treap with elements x1 xn xi has i-th smallest keyLet T be a treap with elements  x1, …, xn xi has i th smallest key
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1. Successful search: The expected number of nodes on the path 
to xm is Hm + Hn-m+1 – 1.

2. Unsuccessful search : Let m be the number of keys that are smaller  
than the search key k.  The expected number of nodes on the 
search path is H + Hsearch path is Hm + Hn-m.
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Analysis of the ‘Search’ operation

Proof: Part 1
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Analysis of the ‘Search’ operation

i < m i < m ::

)1(1/  ] ofancestor  is Prob[ ][ , +−== imxxXE miim

All elements in {x x } have the same probability of being the oneAll elements in {xi, …, xm} have the same probability of being the one 
with the smallest priority.
Prob[Pmin({xi,…,xm}) = xi] = 1/(m-
i 1)i+1)

i > m i > m ::
)1(1/  ][ , +−= miXE im
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Analysis of the ‘Search’ operation
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Part 2 follows analogouslyPart 2 follows analogously



Inserting a new element x

1. Choose prio(x).1. Choose prio(x).
2. Search for the position of x in the tree.

3.   Insert x as a leaf.
4 Restore the heap property4.   Restore the heap property.

while prio(parent(x)) > prio(x) do
if x is left child then RotateRight(parent(x))

else RotateLeft(parent(x));
endif

endwhile;
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Rotations

R t t Ri htR t t Ri hty

RotateLeftRotateLeft

RotateRightRotateRighty x
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The rotations maintain the search tree property and The rotations maintain the search tree property and 
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Deleting an element x

1 Find x in the tree1. Find x in the tree.
2. while x is not a leaf do

u := child with smaller priority;
if u is left child then RotateRight(x))      

else RotateLeft(x); 
difendif;

endwhile;
3. Delete x;3. Delete x;
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Rotations

RotateRightRotateRightx u

RotateLeftRotateLeft
xu
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Analysis of ‘Insert’ and ‘Delete’ operationsAnalysis of Insert  and Delete  operations

Lemma: The expected running time of insert and delete operationsLemma: The expected running time of insert and delete operations 
is O(log n). The expected number of rotations is 2.

Proof: Analysis of insert (delete is the inverse operation)
# rotations  =    depth of x after being inserted as a leaf       (1)

d th f ft th t ti (2)- depth of x after the rotations                         (2)
Let x = xm . 
(2) Expected depth is Hm + Hn m+1 – 1.(2) Expected depth is Hm  Hn-m+1 1.
(1) Expected depth is Hm-1 + Hn-m + 1.

The tree contains n-1 elements, m-1 of them being smaller.

# rotations = Hm-1 + Hn-m + 1 – (Hm + Hn-m+1 – 1)  <  2
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Extended set of operations

n = number of elements in treap T.p

• Minimum(T): Return the smallest key. O(log n)
M i (T) R t th l t k O(l )• Maximum(T): Return the largest key. O(log n)

• List(T): Output elements of S in increasing order.  O(n)

• Union(T1,T2):    Merge T1 and T2.
Condition: ∀ x ∈ T x ∈ T : key(x ) < key(x )Condition:  ∀ x1 ∈ T1 , x2 ∈ T2:   key(x1) < key(x2)

• Split(T,k,T1,T2): Split T into T1 and T2.  
∀ x1 ∈ T1 , x2 ∈ T2:  key(x1) ≤ k and k < key(x2)
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The ‘Split’ operation

Split(T k T1 T2): Split T into T1 and T2Split(T,k,T1,T2):    Split T into  T1 and T2.  
∀ x1 ∈ T1 , x2 ∈ T2:  key(x1) ≤ k and  key(x2) > k

W.l.o.g. key k is not in T. 
Otherwise delete the element with key k and re-insert it into T1 after the 
split operationsplit operation.

1. Generate a new element x with key(x)=k and prio(x) = -∞.
2. Insert x into T.
3. Delete the new root. The left subtree is T1, the right subtree is T2.
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The ‘Union’ operation 

Union(T1 T2): Merge T1 and T2Union(T1,T2):  Merge T1 and T2.  
Condition:  ∀ x1 ∈ T1 , x2 ∈ T2:   key(x1) < key(x2)

1. Determine key k with key(x1) < k < key(x2)1.  Determine key k with key(x1)  k  key(x2)
for all x1 ∈ T1 and  x2 ∈ T2.

2.  Generate element x with key(x)=k and prio(x) = -∞.
3. Generate treap T with root x, left subtree T1 and 

right subtree T2.
4 Delete from T4.  Delete x from T.
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Analysis

Lemma: The expected running time of the operations Union
and Split is O(log n).
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Implementation

Priorities from [0 1)Priorities from [0,1)

Priorities are used only when two elements are compared to find out 
which of them has the higher priority.

In case of equality extend both priorities by bits chosen uniformly atIn case of equality, extend both priorities by bits chosen uniformly at 
random until two corresponding bits differ.

p1 = 0.010111001                               p1 = 0.010111001011
p2 = 0.010111001                               p2 = 0.010111001010
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