)

Analysis of the ‘Search’ operation

Let T be a treap with elements x,, ..., X, X has i-th smallest key

n
n-th Harmonic number: H = Zk:lll K
Lemma:
1. Successful search: The expected number of nodes on the path
to Xm IS I_Im-"Hn-m+1_:|-- 0(,&]%)

2. Unsuccessful search : Let m be the number of keys that are smaller
than the search key k. The expected number of nodes on the

search path IS Hm + Hn-m' O (,eo] w-) 4&
L

Winter Term 11/12 1

)

Analysis of the ‘Search’ operation

Proof: Part 1

X = 1 x isancestorof x
m 10 otherwise

X, = # nodes on the path from the root to x,, (incl. x,,)

Winter Term 11/12 2

)

Analysis of the ‘Search’ operation

I<m:
E[X,.;] =Prob[x Isancestor of x]=1/(m-1+1)

All elements in {x, ..., X,} have the same probability of being the one
with the smallest priority.

Prob[P, .. ({X,....x.}) = x] = 1/(m-
i+1)

1>m:

E[X,..]=1/(i —m+1)

Winter Term 11/12

)

Analysis of the ‘Search’ operation

Ef X 1+
Xl = ém | +1 ;l—m+1
1 1 1 1
=1+ —+. +=+=+...+
m 2 2 n—-m+1
:Hm+Hn—m+1_1

Part 2 follows analogously

Winter Term 11/12 4

Inserting a new element x

1. Choose prio(x). o’ by wh vamdon v Lo4)
2. Search for the position of x in the tree.

)

o UL e fron K Sl ey,

Frop

Y .A/{/Mﬂxa\/wwmw

lpn’n()’) ‘9\[0‘}4,{(‘-3—

3. Insert x as a leaf.

4. Restore the heap property. tg\rcra.ul’;
while prio(parent(x)) > prio(x) do
if X is left child then RotateRight(parent(x))
else RotateLeft(parent(x)); YA

endif @S\
endwhile; Z<

i

Winter Term 11/12

"MM)(}&W(MWR%W

Rotations
(¥

e\ T

RotateRight

pts (%) RotateLeft

The rotations maintain the search tree property and
restore the heap property.

Winter Term 11/12 6

Deleting an element X

1. Find x in the tree. o D_LMMS a Aeaf sy

2. while xis not a leaf do
u := child with smaller priority;
If u is left child then RotateRight(x))

T else RotateLeft(x); Hoe heap bl ok

endif;
endwhile:

3. Delete x; %
O,

Winter Term 11/12

Rotations

RotateRight

RotatelLeft
Po (v)

Winter Term 11/12 8

-
Sy ' Saw ~— = -"-- - - - B e -~ 'I' = - -

Analvsis of ‘Insert’ and ‘Delete
’/L——-

Lemma: The expected running time of insert and delete operations

IS O(Iog n) The expected number of rotations is 2.
Lo Yoo

Proof: Analysis of insert (delete is the inverse operation)

rotations = depth of x after being inserted as a leaf

- depth of x after the rotations

Let X = X,
]
s@Expected depthisH, +H_ .., — 1. :/"W’V’W feasehs
— (1)Expected depth is Hy; + H, + 1. st amfil Jos L

’MMM The tree contains n-1 elements, m-1 of them being smaller.
WM ooewn 4 o

3 WIVIOIN, o SV — 7 L
Cl# rotatlons]— Ho,+H - +1—(H_ + Hn -1 <
m
\,-/\/\/
CA) Lz)

Winter Term 11/12 9

Extended set of operations

@)z number of elements in treap T.

* Minimum(T): Return the smallest key. O(log n)
« Maximum(T): Return the largest key. O(log n)
o List(T): Output elements of S in increasing order. O(n)

nevelns fyaveryal

Lisk (T)= 1 Gt (LT, onhpt (et () it (RST (T))S
e Union(T,,T,): Merge@and@

Condition: Vx, € T, , X, € T, key(xy) < key(x,)

e Split(T,k,T,,T,): Sp|lt@lnt@ and(Ty)

— V¥V x eT,,%e T, key(xy) <k andk < key(x,)

Winter Term 11/12 10

)

The ‘Split’ operation

Split(T k,T,,T,): Split T into T, and T,.
VXx,eTy,%X, e T, key(xy) <k and key(x,) >k

W.l.o.g. keykisnotinT.

Otherwise delete the element with key k and re-insert it into T, after the
split operation.

1. Generate a new element x with key(x)=k and prio(x) = -eo.
2. Insert x into T.

3. Delete the new root. The left subtree is T,, the right subtree is T,.

——

X, € T, : ,{63(>‘4)£(< X, €T, l(oa (X'z)>1€

L~

Winter Term 11/12 11

The ‘Union’ operation

Union(T,,T,): Merg@and@
Condition: V x, € T{, X, € T, key(x;) < key(x,)

1. Determine key k with key(x,) < k < key(x,)

forall x,e T;and x,e T,. x
2. Generate element x with key(x)=k and prio(x) = -c-. A
3. Generate treap T with root x, left subtree T, and &

right subtree T,. i

4. Delete x from T.

Winter Term 11/12 12

Analysis

Lemma: The expected running time of the operations Union
and Split is O(log n).

Winter Term 11/12 13

)

Implementation

Priorities from [0,1)

PR

_Priorities are used only when two elements are compared to find out
which of them has the higher priority. i gt ,

In case of equality, extend both priorities by bits chosen uniformly at
random until two corresponding bits differ.

p'= 004 0444

p, =/0.010111001{9°°° py = 0.010111001011
0, =(0.010111001 0, = 0.01011100101

T
=N

Winter Term 11/12 14

