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Overview

= Introduction
= Universal hashing
= Perfect hashing
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The dictionary problem

Given: Universe U = [0...N-1], where N is a natural number.

Goal: Maintain set S < U under the following operations.
e Search(x,S): IsxeS?

* Insert(x,S): Insert x into S if not already in S.
 Delete(x,S): Delete x from S.
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Trivial implementation

)

Array A[0...N-1] where Alll=1 < 1€ S

Each operation takes time O(1) but the required memory space is O(N).

Goal: Space requirement O(|S|) and expected time O(1)
per operation.

Winter Term 11/12 4



)

ldea of hashing

Use an array of length O(|S]).

Compute the position where to store an element using a function
defined on the keys.

Universe U =[0...N-1]
Hash table Array T[0...m-1]
Hash function h: U — [0...m-1]

Element x € S is stored in T[h(x)].
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N=100; U=[0...99]; m=7; h(xX)=xmod7;, S=4{3, 19,22}

Example

0)

1 22
2

3 3
4

5 19
6

If 17 is inserted next, a collision arises because
h(17) = 3.
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Possible collision resolutions

Hashing with chaining: T[i] contains a list of elements.

Hashing with open addressing: Instead of one address for an
element there are m many that are probed sequentially.

Universal hashing: Choose a hash function such that only few
collisions occur. Collisions are resolved by chaining.

Perfect hashing: Choose a hash function such that no collisions
occur.

Winter Term 11/12



)

ldea: Use a class H of hash functions. The hash function h € H actually
used is chosen uniformly at random from H.

Universal hashing

Goal: For each S c U, the expected time of each operation is O(1 + [3),
where 3 = |S|/m is the load factor of the table.

Property of H: For two arbitrary elements x,y € U, only few
h € H lead to a collision (h(x) = h(y)).
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Universal hashing

Definition: Let N and m be natural numbers. A class
Hc{h:[0...N-1] — [0...m-1]} is universal if for all
Xx,ye U=][0...N-1], x=#Vy:

[{he H h(x)=h(y);|_1
|H | om

Intuitively: An h chosen uniformly at random is as good as if the
table positions of the elements are chosen uniformly at random.
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A universal class of functions

Let N, m be natural numbers, where N is prime.
For numbersace {1, ... ,N-1}and b € {0, ... , N-1}, let
h.p:U=[0...N-1] = {0, ..., m-1} be defined as:

h.p (X) = ((ax + b) mod N) mod m

Theorem: H={h,, (X)|1<a<Nand0<b <N}isauniversal class
of hash functions.
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Proof

)

Consider a fixed pair X, y with x 2y .
h.p(X) = ((@ax+b) mod N) mod m  h, ,(y) = ((ay+b) mod N) mod m

1. Pairs (q,r) with g = (ax+b) mod N and r = (ay+b) mod N
for variable a,b take the whole range 0 < ¢,r <N with g=#r

-q#r: g=r implies a(x-y) =cN

-- different pairs a,b yield different pairs (q,r).
(ax+b) mod N =g (ay+b) mod N =r
(@'x+b’) mod N =q (@'y+b) mod N =r
imply (a-a’)(x-y) = cN
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Proof

)

Fixed pair X,y with x #y .
h,p(X) = ((@ax+b) mod N) mod m  h, ,(y) = ((ay+b) mod N) mod m

2. How many pairs (q,r) with g = (ax+b) mod N and r = (ay+b) mod N
are mapped into the same residue class mod m?

For a fixed g, there are only (N-1)/m numbers r, with
gmodm =rmodm and q #r.

ith € H: h(x) = h(y)}| < N(N-1)/m = [H}/m
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Analysis of the operations

Assumptions: 1. his chosen uniformly at random from a
universal class H.
2. Collisions are resolved by chaining.

For heH and xy € U let

1 h(X)=h(y)andx=#y
O otherwise

0, (X, y) = {

0,(X,S) = ZyeS 0,(X,y) is the number of elements in T[h(x)]

different from x when S is stored.
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Analysis of the operations

h fixed, S fixed

= Search(x, S)

= Insert(x, S)

= Delete(x, S)
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Theorem: Let H be a universal class and S c U =[0...N-1] with |S| = n.
1. Forany x € U:

Analysis of the operations

1+n/m X¢& S
1+(n-)/m xe S

1

F Z(1+ 0,(X S)) < {

2. The expected time of the operations ‘Search’, ‘Insert’, and ‘Delete’ is
O(1 + B), where B = n/m is the load factor.
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Proof

1. Z(1+5 (% S)=IH[+>.2 3 (X Y)

2. Follows from 1.
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heH yeS

= H[+> > 5, (xY)

yeSheH

_ |H |(A+n/m) X¢ S
“|IH|@+(h=-D)/m) xeS
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Choose a hash function that is injective (i.e. one-to-one) on the set S to
be stored. (Assumption: S is known in advance.)

Perfect hashing

Two-level hashing scheme

1. Inthe first level, S is partitioned into “short lists”
(hashing with chaining).

2. Inthe second level for each list, a separate injective hash function is
used.
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Construction of injective hash functions

Let U =[0...N-1].
Fork e {1,...,N-1}, let

h,:U — {0,...,m-1}
X = ((kx) mod N ) mod m

s it possible to choose k such that h, restricted to S

h, restricted to S is injective if for all X,y € S, x=v,
h(x) = h(y)
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A measure for the violation of injectivity

For 0<i<m-1 and 1< k < N-1let
b= xe S:h(x)=1}

Then:
{(xy)e S2: x=y and h(x) =h(y) =i }| = by (by —1)

Define

m-1
B, = Z bik (bik -1)
i=0

B, measures to which extent h, restricted to S is not injective.
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Injectivity

Lemma 1: h,restrictedto Sis injective < B, <2

Proof:
B,<2 = B<1 = Dby(by—1) e {01} foralli
= bye {0,1} = h,restrictedto S is injective

20
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Injectivity

)

Lemma 2: Let N be a prime number, S ¢ U =[0...N-1] with [S| = n.

Then
N-1 B
S B, <20y )
k=1 m

If m > n(n-1), then there exists B, with B, < 2,
l.e. there is an h, that is injective on S.
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Proof of Lemma 2

N-1m-1
blk(b|k _1)
k=1 i=0

N-1m-1

I{(><y)eSZ x# Y, (X)=h (y)=1}]

k=1 i=

= Yk (0 =h (Y}

(x,y)e S?
X#Y

Let (X,y) € S?, x # Y, be fixed. How many k exist with h,(x) = h,(y)?
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Proof of Lemma 2

h(X) =h(y)
< ((kx) mod N) modm= ((ky) mod N) modm
< (kkmod N —kymodN) modm=0
& k(X—y)modN =cm
g = k(x-y) mod N

-- different k, k’ yield different q, q'.
K(x-y) mod N = q K'(X-y) mod N =@

(k-k’)(x-y) =C'N

-- only [ (N-1)/m | many g are mapped into the same
residue class mod m
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Results

Corollary 1: There are at least (N-1)/2 many k with B, < 4n(n-1)/m.
Such a k can be determined in expected time O(m+n).

Proof: Suppose that there are less than (N-1)/2 many k with
B, < 4n(n-1)/m.
Then there are at least (N-1)/2 many k with B, > 4n(n-1)/m

N-1

¥ B, > N—-14n(n-1) _ N _12n(n—1)
1 2 m m

With probability > %2 , a k chosen at random fulfills the condition. The
expected number of trials is < 2.
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Results

‘ llr
Corollary 2:

a) Letm = 2n(n-1)+1. Then at least (N-1)/2 of the h, are injective on S.
Such an h, can be found in expected time O(m+n)=0(n?).

b) Let m =n. Then for at least (N-1)/2 of the h, it holds that B, < 4(n-1).
Such an h, can be found in expected time O(n).
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Two-level scheme

)

ScU-=]0...N-1] IS|=n=m
Idea: Use Corollary 2b and divide S into subsets of size O(Vn).
Use Cor. 2a for each subset.

1. Choose k with B, < 4(n-1) < 4n.
h,: X — ((kx) mod N ) mod n

2. W, ={x eS:hX)=1}, b=|W|, m=2Db(b-1)+1 forO0<i<n-1
Choose k; such that

h, :x— (kxmodN) modm

restricted to W, is injective.
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Two-level scheme

3.§=) m

j<i

Store xe S in table position T[s; + j] where

| = (k x mod N) mod n

(kx mod N) mod n
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] = (k; x mod N) mod m,

Wo

W,

Wn-l

m-1
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(./)
s

O
D
<‘D

n-1 n-1
m=> m=> (2b({ -1)+1) =n+2B,
=0 =0

<n+8(n-1) <9n

Additional space is required for storing ki, m;, and s,.
The total space requirement is O(n).

Winter Term 11/12 28



Construction time

)

= According to Cor. 2b, k can be found in expected time O(n).
= W, b, m;, s; can be computed in time O(n).

= According to Cor. 2a, each k; can be computed in expected time
O(b:?).

Total expected time:

O(n+ Zn:bfj =0O(n+B,) =0(n)

=0
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Main result

)

Theorem: Let N be a prime number and S c U =[0...N-1] with |S| = n.

A perfect hash table of size O(n) and a hash function with access
time O(1) can be constructed for S in expected time O(n).
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