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The dictionary problem

Given:  Universe U =  [0…N-1] , where N is a natural number.[ ]

Goal: Maintain set S ⊆ U under the following operations.
• Search(x,S): Is x ∈ S?
• Insert(x,S): Insert x into S if not already in S.
• Delete(x S): Delete x from S• Delete(x,S): Delete x from S.
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Trivial implementation

Array A[0 N-1] where A[i] = 1 ⇔ i ∈ SArray A[0…N 1]           where           A[i]  1   ⇔ i ∈ S

Each operation takes time O(1) but the required memory space is Θ(N).

00 00 11 11 00 11 11 11 110000AA
00 ΝΝ−−11

Goal:Goal: Space requirement O(|Space requirement O(|SS|) and |) and expectedexpected time O(1) time O(1) 
per operation.per operation.
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Idea of hashing

Use an array of length O(|S|)Use an array of length O(|S|).
Compute the position where to store an element using a function

defined on the keys.

Universe   U = [0…N-1]
Hash table Array T[0 m 1]Hash table Array  T[0…m-1]
Hash function h: U → [0…m-1]

Element x ∈ S is stored in T[h(x)].
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Example

N = 100; U = [0 99]; m = 7; h(x) = x mod 7; S = {3 19 22}N  100;     U  [0…99];     m  7;     h(x)  x mod 7;     S  {3, 19, 22}
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If 17 is inserted next, If 17 is inserted next, a a collisioncollision arises because arises because 
hh(17) = 3(17) = 3
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Possible collision resolutions

Hashing with chaining: T[i] contains a list of elementsHashing with chaining: T[i] contains a list of elements.

Hashing with open addressing: Instead of one address for an
element there are m many that are probed sequentially.

U i l h hi Ch h h f ti h th t l fUniversal hashing: Choose a hash function such that only few
collisions occur. Collisions are resolved by chaining.  

Perfect hashing: Choose a hash function such that no collisions
occur. 
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Universal hashing

Idea: Use a class H of hash functions The hash function h ∈ H actuallyIdea: Use a class H of hash functions. The hash function h ∈ H actually 
used is chosen uniformly at random from H.

Goal: For each S ⊆ U, the expected time of each operation is O(1 + β) , 
where β = |S|/m is the load factor of the table.

Property of H: For two arbitrary elements x,y ∈ U, only few
h ∈ H lead to a collision (h(x) = h(y))h ∈ H lead to a collision (h(x) = h(y)).
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Universal hashing

Definition: Let N and m be natural numbers A classDefinition: Let N and m be natural numbers. A class
H ⊆ { h : [0…N-1]  → [0…m-1] } is universal if for all
x,y ∈ U = [0…N-1],   x ≠ y :

yhxhHh 1|)}()(:{| ≤=∈
mH

y
||

|)}()({| ≤

Intuitively: An h chosen uniformly at random is as good as if the
table positions of the elements are chosen uniformly at random.
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A universal class of functions

Let N m be natural numbers where N is primeLet N, m be natural numbers, where N is prime.
For numbers a ∈ {1, … , N-1} and b ∈ {0, … , N-1}, let
ha,b : U = [0…N-1]  → {0, … , m-1} be defined as:

ha,b (x) =  ((ax + b) mod N) mod m

Theorem: H = {ha,b (x) | 1≤ a < N and 0 ≤ b < N} is a universal class
of hash functions.
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Proof

Consider a fixed pair x y with x ≠ yConsider a fixed pair x, y with x ≠ y . 
ha,b(x) = ((ax+b) mod N) mod m    ha,b(y) = ((ay+b) mod N) mod m

1. Pairs (q,r) with q = (ax+b) mod N and r = (ay+b) mod N
for variable a,b take the whole range 0 ≤ q,r < N  with  q ≠ r

-- q ≠ r :   q = r implies  a(x-y) = cN
-- different pairs a,b yield different pairs (q,r).different pairs a,b yield different pairs (q,r).

(ax+b) mod N = q (ay+b) mod N = r  
(a’x+b’) mod N = q            (a’y+b’) mod N = r 
imply (a-a’)(x–y) = cN
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Proof

Fixed pair x y with x ≠ yFixed pair x,y with x ≠ y . 
ha,b(x) = ((ax+b) mod N) mod m    ha,b(y) = ((ay+b) mod N) mod m

2.  How many pairs (q,r) with q = (ax+b) mod N and r = (ay+b) mod N
are mapped into the same residue class mod m?

For a fixed q, there are only (N-1)/m numbers r, with
q mod m = r mod m and q ≠ r.q mod m   r mod m and    q ≠ r.

|{h ∈ H : h(x) = h(y)}| ≤ N(N-1)/m = |H|/m
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Analysis of the operations

Assumptions:  1.  h is chosen uniformly at random from ap y
universal class H.

2.  Collisions are resolved by chaining.

For   h ∈ H and   x,y ∈ U let
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different from x when S is stored.

∑ ∈Sy hh y)()(
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Analysis of the operations

h fixed S fixedh fixed, S fixed

Search(x, S)

Insert(x, S)

Delete(x, S)
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Analysis of the operations

Theorem: Let H be a universal class and S ⊆ U = [0 N-1] with |S| = nTheorem: Let H be a universal class and S ⊆ U  [0…N 1] with |S|  n.
1. For any x ∈ U:
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2. The expected time of the operations ‘Search’, ‘Insert’, and ‘Delete’ is
O(1 + β), where β = n/m is the load factor.
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Proof
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2. Follows from 1.2. Follows from 1.
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Perfect hashing

Choose a hash function that is injective (i e one-to-one) on the set S toChoose a hash function that is injective (i.e. one to one) on the set S to 
be stored. (Assumption: S is known in advance.)

Two-level hashing scheme
1 In the first level S is partitioned into “short lists”1.  In the first level, S is partitioned into short lists

(hashing with chaining).
2. In the second level for each list, a separate injective hash function is p j

used.
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Construction of injective hash functions

Let U = [0 N-1]Let U  [0…N 1].
For k ∈ {1,…,N-1}, let

hk : U → {0,…,m-1}
x → ((kx) mod N ) mod m

Let S ⊆ U. Is it possible to choose k such that hk restricted to SLet S ⊆ U. Is it possible to choose k such that hk restricted to S
is injective?

hk restricted to S is injective if for all x,y ∈ S,  x≠ y, 
hk(x) ≠ hk(y)
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A measure for the violation of injectivity

For 0 ≤ i ≤ m-1 and 1 ≤ k ≤ N-1 letFor  0 ≤ i ≤ m 1   and   1 ≤ k ≤ N 1 let

bik = |{ x ∈ S : hk(x) = i }|

Then:
|{ ( ) S2 d h ( ) h ( ) i }| b (b 1)|{ (x,y) ∈ S2 : x ≠ y and hk(x) = hk(y) = i }|  =  bik (bik – 1) 

DefineDefine
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Bk measures to which extent hk restricted to S is not injective.

0i
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Injectivity

Lemma 1: h restricted to S is injective ⇔ B < 2Lemma 1:   hk restricted to S is injective    ⇔ Bk < 2

Proof:
Bk < 2    ⇒ Bk ≤ 1     ⇒ bik (bik – 1) ∈ {0,1}   for all i

⇒ bik ∈ {0,1}    ⇒ hk restricted to S is injective 

h restricted to S is injective ⇒ b ∈ {0 1} for all ihk restricted to S is injective    ⇒ bik ∈ {0,1}  for all i
⇒ Bk = 0
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Injectivity

Lemma 2: Let N be a prime number S ⊆ U = [0 N-1] with |S| = nLemma 2: Let N be a prime number, S ⊆ U  [0…N 1] with |S|  n.  
Then
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If m > n(n-1), then there exists Bk with Bk < 2, 
i.e. there is an hk that is injective on S.
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Proof of Lemma 2
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Let (x,y) ∈ S2, x ≠ y, be fixed. How many k exist with hk(x) = hk(y)?
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Proof of Lemma 2
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q = k(x-y) mod N
-- different k, k’ yield different q, q’.

k(x-y) mod N = q k’(x-y) mod N = q  

(k k’)( ) ’N(k-k’)(x-y)  = c’N

-- only ⎡(N-1)/m⎤ many q are mapped into the same
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Results

Corollary 1:  There are at least (N-1)/2 many k with Bk ≤ 4n(n-1)/m.y ( ) y k ( )
Such a k can be determined in expected time O(m+n).

P f S th t th l th (N 1)/2 k ithProof: Suppose that there are less than (N-1)/2 many k with
Bk ≤ 4n(n-1)/m.

Then there are at least (N-1)/2 many k with Bk > 4n(n-1)/m( ) y k ( )
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With probability ≥ ½ , a k chosen at random fulfills the condition. The 
expected number of trials is ≤ 2.
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Results

Corollary 2:  y
a) Let m = 2n(n-1)+1. Then at least (N-1)/2 of the hk are injective on S.

Such an hk can be found in expected time O(m+n)=O(n2).

b) Let m = n. Then for at least (N-1)/2 of the hk it holds that Bk ≤ 4(n-1).
Such an h can be found in expected time O(n)Such an hk can be found in expected time O(n).
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Two-level scheme

S ⊆ U = [0…N-1]          |S| = n = m⊆ [ ] | |
Idea: Use Corollary 2b and divide S into subsets of size O(√n).

Use Cor. 2a for each subset.

1. Choose k with Bk ≤ 4(n-1) ≤ 4n. 
hk : x → ((kx) mod N ) mod n

2 W = { x ∈ S : h (x) = i } b = |W | m = 2b (b 1)+1 for 0≤ i ≤ n 12. Wi = { x ∈ S : hk(x) = i },    bi = |Wi |,   mi = 2bi (bi –1)+1   for 0≤ i ≤ n-1
Choose ki such that

mNxkxh mod)mod(: →
restricted to Wi is injective.

iik mNxkxh
i

mod)mod(: →
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Two-level scheme

3 ∑= ji ms3. 
Store x∈ S in table position T[si + j]  where
i = (k x mod N) mod n j = (ki x mod N) mod mi

∑ <ij ji ms
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Space required for hash table and functionsSpace required for hash table and functions
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Additional space is required for storing ki, mi and si.Additional space is required for storing ki,  mi and  si.
The total space requirement is O(n).
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Construction time

According to Cor 2b k can be found in expected time O(n)According to Cor. 2b, k can be found in expected time O(n).

Wi, bi, mi, si can be computed in time O(n).

According to Cor. 2a, each ki can be computed in expected time 
O(b 2)O(bi

2).

Total expected time:p
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Main result

Theorem: Let N be a prime number and S ⊆ U = [0…N-1] with |S| = n.
A perfect hash table of size O(n) and a hash function with access 
time O(1) can be constructed for S in expected time O(n).

30Winter Term 11/12


