
Perfect hashing

Choose a hash function that is injective (i e one-to-one) on the set S toChoose a hash function that is injective (i.e. one to one) on the set S to 
be stored. (Assumption: S is known in advance.)

Two-level hashing scheme
1 In the first level S is partitioned into “short lists”1.  In the first level, S is partitioned into short lists

(hashing with chaining).
2. In the second level for each list, a separate injective hash function is p j

used.
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Construction of injective hash functions

Let U = [0 N-1] S ⊆ U |S| = n |T| = mLet U  [0…N 1], S ⊆ U, |S|  n, |T|  m
For k ∈ {1,…,N-1}, let

hk : U → {0,…,m-1}
x → ((kx) mod N ) mod m

Let S ⊆ U. Is it possible to choose k such that hk restricted to SLet S ⊆ U. Is it possible to choose k such that hk restricted to S
is injective?

hk restricted to S is injective if for all x,y ∈ S,  x≠ y, 
hk(x) ≠ hk(y)
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A measure for the violation of injectivity

For 0 ≤ i ≤ m-1 and 1 ≤ k ≤ N-1 letFor  0 ≤ i ≤ m 1   and   1 ≤ k ≤ N 1 let

bik = |{ x ∈ S : hk(x) = i }|

Then:
|{ ( ) S2 d h ( ) h ( ) i }| b (b 1)|{ (x,y) ∈ S2 : x ≠ y and hk(x) = hk(y) = i }|  =  bik (bik – 1) 
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Bk measures to which extent hk restricted to S is not injective.
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Injectivity

Lemma 1: h restricted to S is injective ⇔ B < 2Lemma 1:   hk restricted to S is injective    ⇔ Bk < 2

Proof:
Bk < 2    ⇒ Bk ≤ 1     ⇒ bik (bik – 1) ∈ {0,1}   for all i

⇒ bik ∈ {0,1}    ⇒ hk restricted to S is injective 

h restricted to S is injective ⇒ b ∈ {0 1} for all ihk restricted to S is injective    ⇒ bik ∈ {0,1}  for all i
⇒ Bk = 0
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Injectivity

Lemma 2: Let N be a prime number S ⊆ U = [0 N-1] with |S| = nLemma 2: Let N be a prime number, S ⊆ U  [0…N 1] with |S|  n.  
Then
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If m > n(n-1), then there exists Bk with Bk < 2, 
i.e. there is an hk that is injective on S.
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Proof of Lemma 2
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Let (x,y) ∈ S2, x ≠ y, be fixed. How many k exist with hk(x) = hk(y)?
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Proof of Lemma 2
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q = k(x-y) mod N
-- different k, k’ yield different q, q’.

k(x-y) mod N = q k’(x-y) mod N = q  

(k k’)( ) ’N(k-k’)(x-y)  = c’N

-- only ⎡(N-1)/m⎤ many q are mapped into the same
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only ⎡(N 1)/m⎤ many q are mapped into the same   
residue class mod m



Results

Corollary 1:  There are at least (N-1)/2 many k with Bk ≤ 4n(n-1)/m.y ( ) y k ( )
Such a k can be determined in expected time O(m+n).

P f S th t th l th (N 1)/2 k ithProof: Suppose that there are less than (N-1)/2 many k with
Bk ≤ 4n(n-1)/m.

Then there are at least (N-1)/2 many k with Bk > 4n(n-1)/m( ) y k ( )
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With probability ≥ ½ , a k chosen at random fulfills the condition. The 
expected number of trials is ≤ 2.
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Results

Corollary 2:  y
a) Let m = 2n(n-1)+1. Then at least (N-1)/2 of the hk are injective on S.

Such an hk can be found in expected time O(m+n)=O(n2).

b) Let m = n. Then for at least (N-1)/2 of the hk it holds that Bk ≤ 4(n-1).
Such an h can be found in expected time O(n)Such an hk can be found in expected time O(n).
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Two-level scheme

S ⊆ U = [0…N-1]          |S| = n m = O(n)⊆ [ ] | | ( )
Idea: Use Corollary 2b and divide S into subsets of size O(√n).

Use Cor. 2a for each subset.

1. Choose k with Bk ≤ 4(n-1) ≤ 4n. 
hk : x → ((kx) mod N ) mod n

2 W = { x ∈ S : h (x) = i } b = |W | m = 2b (b 1)+1 for 0≤ i ≤ n 12. Wi = { x ∈ S : hk(x) = i },    bi = |Wi |,   mi = 2bi (bi –1)+1   for 0≤ i ≤ n-1
Choose ki such that

mNxkxh mod)mod(: →
restricted to Wi is injective.

iik mNxkxh
i
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Two-level scheme

3 ∑= ji ms3. 
Store x∈ S in table position T[si + j]  where
i = (k x mod N) mod n j = (ki x mod N) mod mi
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Space required for hash table and functionsSpace required for hash table and functions
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Additional space is required for storing ki, mi and si.Additional space is required for storing ki,  mi and  si.
The total space requirement is O(n).
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Construction time

According to Cor 2b k can be found in expected time O(n)According to Cor. 2b, k can be found in expected time O(n).

Wi, bi, mi, si can be computed in time O(n).

According to Cor. 2a, each ki can be computed in expected time 
O(b 2)O(bi

2).

Total expected time:p
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Main result

Theorem: Let N be a prime number and S ⊆ U = [0…N-1] with |S| = n.
A perfect hash table of size O(n) and a hash function with access 
time O(1) can be constructed for S in expected time O(n).
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