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Amortization

• Consider a sequence a1 a2 an ofConsider a sequence a1, a2, ... , an of 
n operations performed on a data structure D

• Ti = execution time of ai

• T = T1 + T2 + ... + Tn total execution timeT  T1  T2  ...  Tn total execution time

• The execution time of a single operation can vary within a large 
range, e.g. in 1,...,n, but the worst case does not occur for all 
operations of the sequence.

• Average execution time of an operation is small, even though a 
single operation can have a high execution time. 
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Analysis of algorithms

• Best caseBest case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation in a worst case
sequence of operations?
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Amortization

Idea: 

• Pay more for inexpensive operations
U th dit t th t f i ti• Use the credit to cover the cost of expensive operations

Three methods:

1 Aggregate method1. Aggregate method
2. Accounting method
3. Potential method
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Amortization = Overcharging + Bookkeeping
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1. Aggregate method: binary counter 

Incrementing a binary counter: determine the bit flip cost
Operation Counter value CostOperation Counter value Cost

00000
1 00001 1
2 00010 2
3 00011 1
4 00100 34 00100 3
5 00101 1
6 00110 2
7 00111
8 01000
9 010019 01001
10 01010
11 01011
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2. The accounting method

Observation:
In each increment exactly one 0 flips to 1.

Idea:
Pay two cost units for flipping a 0 to a 1Pay two cost units for flipping a 0 to a 1 

each 1 has one cost unit deposited in the banking account
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The accounting method

Operation Counter valuep
0 0 0 0 0

1 0 0 0 0 1
2 0 0 0 1 02 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 17 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
10 0 1 0 1 0
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3. The potential method

Potential function φPotential function φ

Data structure D φ(D)

ti = actual cost of the i-th operation

φi = potential after execution of the i-th operation (= φ(Di) ) 

ai = amortized cost of the i-th operation

Definition:
ai = ti + φi - φi-1
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Example: binary counter

Di = counter value after the i-th operation 
φ = φ(D ) = # of 1‘s in Dφi = φ(Di) = # of 1 s in Di

i–th operation # of 1‘si th operation # of 1 s

Di 1:  .....0/1.....01.....1 Bi 1i-1 i-1

Di :    .....0/1.....10.....0 Bi = Bi-1 – bi + 1

ti = actual bit flip cost of operation i
= bi+1
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Binary counter

ti = actual bit flip cost of operation i
a = amortized bit flip cost of operation iai = amortized bit flip cost of operation i
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11Winter Term 11/12



Dynamic tables

Problem:
Maintain a table supporting the operations insert and delete such that

• the table size can be adjusted dynamically to the number of items
• the used space in the table is always at least a constant fraction of 

the total spacethe total space
• the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α : number of items stored in the table divided by the sizeLoad factor αT: number of items stored in the table divided by the size
of the table
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Implementation of ‘insert’

class dynamic table {class dynamic table {

int [] table;

int size; // size of the table
i t // b f itint num; // number of items

dynamicTable() { // initialization of an empty tabledynamicTable() { // initialization of an empty table
table = new int [1];
size = 1;
num = 0;
}
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Implementation of ‘insert’

insert ( int x) {insert ( int x) {
if (num == size ) {

newTable = new int [2*size];
for (i = 0; i < size; i++)

insert table[i] into newTable;
t bl T bltable = newTable;
size = 2*size;

}}
insert x into table;
num = num + 1;

}
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Cost of n insertions into an initially empty table

ti = cost of the i-th insert operationti  cost of the i th insert operation

Worst case:

ti = 1 if the table is not full prior to operation i
t (i 1) + 1 if th t bl i f ll i t ti iti = (i – 1) + 1 if the table is full prior to operation i.

Thus n insertions incur a total cost of at mostThus n insertions incur a total cost of at most

( )2

1
ni

n

i
Θ∑ =

=

Amortized worst case:
Aggregate method, accounting method, potential method
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Potential method

T table withT table with

• k = T.num items
• s = T.size size

Potential function

φ (T) = 2 k – s
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Potential method

Propertiesp
• φ0 =  φ(T0) = φ (empty table) = -1

I di t l b f t bl i h k• Immediately before a table expansion we have k = s, 
thus  φ(T) = k = s.

• Immediately after a table expansion we have k = s/2,
thus φ(T) = 2k – s = 0.

• For all i ≥ 1 : φi = φ (Ti) > 0
Since φn - φ0 ≥ 0,

∑ ∑≤ ii at 
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Amortized cost ai of the i-th insertion

ki = # items stored in T after the i-th operationki  # items stored in T after the i th operation
si = table size of T after the i-th operation

Case 1: i-th operation does not trigger an expansion

k k + 1ki = ki-1 + 1, si = si-1

ai = 1 + (2ki - si) - (2ki-1 – si-1)
= 1 + 2(ki - ki-1)
= 3
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Case 2: i-th operation does trigger an expansionCase 2: i th operation does trigger an expansion 

ki = ki-1 + 1, si = 2si-1

ai = ki-1 + 1 + (2ki - si) - (2ki-1 – si-1)

= 3
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Inserting and deleting items

Now: Contract the table whenever the load becomes too smallNow: Contract the table whenever the load becomes too small.

Goal: 
(1) The load factor is bounded from below by a constant.
(2) The amortized cost of a table operation is constant.

First approach 
• Expansion: as beforeExpansion:   as before
• Contraction: Halve the table size when a deletion would cause the 

table to become less than half full.
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„Bad“ sequence of table operations

CostCost

n/2 ‘insert’ op.
(table is full)

3 n/2

I: expansion n/2 + 1

D, D:  contraction n/2 + 1

I, I : expansion n/2 + 1I, I :  expansion n/2  1

D, D: contraction

Total cost of the sequence of operations: 
In/2, I,D,D,I,I,D,D,... of length n is
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Second approach

Expansion: Double the table size when an item is inserted intop
a full table.

C t ti H l th t bl i h d l ti th t bl tContraction: Halve the table size when a deletion causes the table to 
become less than ¼ full.

Property:  At any time the table is at least ¼ full, i.e.
¼  ≤ α(T) ≤ 1

What is the cost of a sequence of table operations?What is the cost of a sequence of table operations?
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Analysis of ‘insert’ and ‘delete’ operations

k = T num s = T size α = k/sk = T.num,   s = T.size, α = k/s

P t ti l f ti φPotential function φ
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Analysis of ‘insert’ and ‘delete’ operations

( )
⎩
⎨
⎧

<
≥−

=
2/1if2/

2/1 if ,2 α
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k
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T
⎩
⎨ <− 2/1if,2/ αks

Immediately after a table expansion or contraction:

s = 2k,   thus  φ(T) = 0
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Analysis of an ‘insert’ operation

i-th operation: ki = ki 1 + 1i th operation: ki  ki-1  1

Case 1: αi-1 ≥ ½

Case 2: αi-1 < ½

Case 2.1: αi < ½
Case 2.2: αi ≥ ½
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Analysis of an ‘insert’ operation

Case 2 1: αi 1 < ½ αi < ½ no expansionCase 2.1: αi-1  ½, αi  ½  no expansion

Potential function φ
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Analysis of an ‘insert’ operation

Case 2.2: αi 1 < ½, αi ≥ ½ no expansioni-1 , i p

Potential function φ
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Potential function φ
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Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1: αi-1 < ½ 

Case 1.1: deletion does not trigger a contractiongg
si = si-1

Potential function φ
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Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1.2: αi-1 < ½ deletion does trigger a contraction

Case 1: αi-1 < ½ 

si = si –1 /2   ki-1 = si-1/4
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Analysis of a ‘delete’ operation

Case 2: αi-1 ≥ ½ no contraction

si = si –1 ki = ki-1 - 1

C 2 1 ≥ ½Case 2.1: αi ≥ ½

Potential function φ
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Analysis of a ‘delete’ operation

Case 2: αi-1 ≥ ½ no contraction

si = si –1 ki = ki-1 - 1

C 2 2 ½Case 2.2: αi < ½
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