Algorithm Theory

06 — Amortized Analysis

Dr. Alexander Souza



Amortization

« Consider a sequence a,, a,, ..., a, of
n operations performed on a data structure D

e T,=execution time of g

e T=T,+T,+..+T, total execution time

* The execution time of a single operation can vary within a large
range, e.g. in 1,...,n, butthe worst case does not occur for all
operations of the sequence.

» Average execution time of an operation is small, even though a
single operation can have a high execution time.

Winter Term 11/12 2



Analysis of algorithms

« Best case

« Worst case
 Average case
 Amortized worst case

What is the average cost of an operation in a worst case
sequence of operations?

Winter Term 11/12



Amortization

ldea:
» Pay more for inexpensive operations
» Use the credit to cover the cost of expensive operations
Three methods:
1. Aggregate method

2. Accounting method
3. Potential method

Winter Term 11/12 4



Amortization = Overcharging + Bookkeeping 0;

Winter Term 11/12 S



1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111

8 01000

9 01001

10 01010

11 01011

12 01100

13 01101

Winter Term 11/12 6



2. The accounting method

Observation:
In each increment exactly one O flips to 1.

ldea:
Pay two cost units for flippinga Otoa l
— each 1 has one cost unit deposited in the banking account

Winter Term 11/12 7



The accounting method

Operation Counter value
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
10 01010

o O~ W DN B

~

Winter Term 11/12



3. The potential method

Potential function ¢

Data structure D = ¢(D)

t; = actual cost of the i-th operation

¢ = potential after execution of the i-th operation (= ¢(D,) )
a; = amortized cost of the i-th operation

Definition:
aQ=t+a-ad,

Winter Term 11/12 9



Example: binary counter

D, = counter value after the i-th operation

¢ = ¢D;) = # of 1's in D,

I—th operation #of 1's
D, ... 0/1.....01..... B.,
D, : ... 0/1.....10..... B.=B_,—-b+1

t; = actual bit flip cost of operation |

= b+1

Winter Term 11/12

10



Binary counter

t. = actual bit flip cost of operation |
a, = amortized bit flip cost of operation |

a :(b| +1)+(Bi—1_b| +1)_ Bi—l
=2
= >t <2n

Winter Term 11/12

11



Dynamic tables

‘ |||r
Problem:

Maintain a table supporting the operations insert and delete such that

» the table size can be adjusted dynamically to the number of items

» the used space in the table is always at least a constant fraction of
the total space

» the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor o.;: number of items stored in the table divided by the size
of the table

Winter Term 11/12 12



Implementation of ‘insert’

class dynamic table {
int [] table;

Int size; /] size of the table
Int num; /I number of items

dynamicTable() { /[ initialization of an empty table
table = new int [1];
Size = 1;
num = 0;

}

Winter Term 11/12 13



Implementation of ‘insert’

iInsert (int x) {
If (num ==size) {
newTable = new int [2*size];
for (i = 0; 1 < size; i++)
iInsert table[i] into newTable;
table = newTable;
Size = 2*size;
}
Insert x into table;
num = num + 1;

Winter Term 11/12 14



Cost of n insertions into an initially empty tabl"r

t; = cost of the i-th insert operation
Worst case:

t=1 if the table is not full prior to operation i
t=(-1)+1 ifthe table is full prior to operation i.

Thus n insertions incur a total cost of at most
3i=0(n?)
i=1

Amortized worst case:
Aggregate method, accounting method, potential method

Winter Term 11/12 15



Potential method

T table with

e k=T.num items
e s=T.size size
Potential function

H(T)=2k—s

16

Winter Term 11/12



Potential method

Properties
* ¢y = «T,) = ¢ (empty table) = -1

 Immediately before a table expansion we have k = s,
thus #T) =k =-s.

 Immediately after a table expansion we have k = s/2,
thus &(T) = 2k —s = 0.

e Foralliz1:¢=¢(T)>0

Since ¢, - ¢,=0,
2624

17

Winter Term 11/12



)

Amortized cost a; of the i-th insertion

k;= # items stored in T after the i-th operation
s, = table size of T after the i-th operation

Case 1: i-th operation does not trigger an expansion

Ki=ki;+1 8=5,

a; = 1+ (2k| - Si) - (2ki—1_ Si—l)
=1+ 2(ki - ki.p)
=3

Winter Term 11/12 18



Case 2: i-th operation does trigger an expansion

ki=ki,+1,5=2s,

a=k,+1+((2k-s)-(2k.,—5S,)

Winter Term 11/12 19



)

Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

Goal:
(1) The load factor is bounded from below by a constant.
(2) The amortized cost of a table operation is constant.

First approach
 Expansion: as before

 Contraction: Halve the table size when a deletion would cause the
table to become less than half full.

Winter Term 11/12 20



,Bad“ sequence of table operations

Cost
n/2 ‘insert’ op.
. P HEEE ----- NN 3n/2
(table is full)
I expansion IR oo ins n2+1
_ EREE ----- B
D, D: contraction = n/2 + 1
I, | . expansion HEEN ----- B5N n/2+1

D, D: contraction EEER ----- B0

Total cost of the sequence of operations:
|-, 1,D,D,1,1,D,D,... of length n is

Winter Term 11/12 21



)

Second approach

Expansion: Double the table size when an item is inserted into
a full table.

Contraction: Halve the table size when a deletion causes the table to
become less than ¥4 full.

Property: At any time the table is at least ¥ full, i.e.
Va < o(T)<1

What is the cost of a sequence of table operations?

Winter Term 11/12 22



Analysis of ‘insert’ and ‘delete’ operations nr

k=T.num, s=T.size, a=Kk/s

Potential function ¢

2k —<s,if a>1/2
(T)= .
s/2—-Kk,iIf a<l/2

Winter Term 11/12 23



Analysis of ‘insert’ and ‘delete’ operations nr

2k —sif a>1/2
(T)= .
s/2—-k,If a<l/?2

Immediately after a table expansion or contraction:

s =2k, thus #T)=0

Winter Term 11/12 24



)

Analysis of an ‘insert’ operation

I-th operation: ki =k, ; +1

Case 1: ¢, =2

Case 2: o <Y

Case 2.1: < Y2
Case 2.2: o= %>

Winter Term 11/12 25



)

Analysis of an ‘insert’ operation

Case 2.1: ¢, < Y%, ;<Y no expansion

Potential function ¢
2k —s,if ¢ >1/2
(T)= .
s/2—-k,if a<1/2

Winter Term 11/12 26



)

Analysis of an ‘insert’ operation

Case 2.2: o, <Y, ;=% no expansion

Potential function ¢
2k —s,if a>1/2
(T)= .
s/2-Kk,if a<1/2

Winter Term 11/12 21



)

Analysis of a ‘delete’ operation
ki=k-1
Case l: <%

Case 1.1: deletion does not trigger a contraction
S| = Sia

Potential function ¢
JZk—s,if a=>1/2
(T)= o
LS/2—k, If o <1/2

Winter Term 11/12 28



)

Analysis of a ‘delete’ operation
ki=k-1

Case l: ;<%

Case 1.2: ¢, <Y deletion does trigger a contraction

S =S; /12 k=54

Potential function ¢

2k—s,iIf >1/2
HT) =
Nl .
s/2-k,if a<1/2

Winter Term 11/12 29



)

Analysis of a ‘delete’ operation

Case 2: ¢_, = % no contraction

Si =S Ki=ki-1

Case 2.1: o= 2

Potential function ¢
2k—s,if a>1/2
s/2—-k,iIf a<1/2

Winter Term 11/12 30



)

Analysis of a ‘delete’ operation

Case 2: ¢_, = % no contraction

Si =S Ki=ki-1

Case 2.2: ox< Y2

Potential function ¢

¢(T)_J 2k —s,if @>1/2
7 |sl2—k,if a<1/2

Winter Term 11/12 31



