

Algorithm Theory

06 – Amortized Analysis

Dr. Alexander Souza

Amortization

- Consider a sequence a₁, a₂, ..., a_n of
 n operations performed on a data structure *D*
- T_i = execution time of a_i
- $T = T_1 + T_2 + \dots + T_n$ total execution time
- The execution time of a single operation can vary within a large range, e.g. in 1,...,n, but the worst case does not occur for all operations of the sequence.
- Average execution time of an operation is small, even though a single operation can have a high execution time.

Analysis of algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Amortization

Idea:

- Pay more for inexpensive operations
- Use the credit to cover the cost of expensive operations

Three methods:

- 1. Aggregate method
- 2. Accounting method
- 3. Potential method

1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

Counter value	Cost
00000	
00001	1
00010	2
00011	1
00100	3
00101	1
00110	2
00111	
01000	
01001	
01010	
01011	
01100	
01101	
	Counter value 00000 00001 00010 00011 00100 00101 00101 00101 00101 00101 00101 01000 01101 01001 01001 01001 01001 01010 01011 01010 01011 01010 01011 01100 01101

Winter Term 11/12

2. The accounting method

Observation:

In each increment exactly one 0 flips to 1.

Idea:

Pay two cost units for flipping a 0 to a 1

 \rightarrow each 1 has one cost unit deposited in the banking account

The accounting method

Operation	Counter value
	00000
1	0 0 0 0 <mark>1</mark>
2	0 0 0 <mark>1 0</mark>
3	0 0 0 1 <mark>1</mark>
4	0 0 <mark>1 0 0</mark>
5	0 0 1 0 <mark>1</mark>
6	0 0 1 <mark>1 0</mark>
7	0 0 1 1 <mark>1</mark>
8	01000
9	0 1 0 0 <mark>1</mark>
10	0 1 0 <mark>1 0</mark>

3. The potential method

Potential function $\boldsymbol{\phi}$

Data structure $D \rightarrow \phi(D)$

 t_i = actual cost of the *i*-th operation

 ϕ_i = potential after execution of the *i*-th operation (= $\phi(D_i)$)

 a_i = amortized cost of the *i*-th operation

Definition:

$$a_i = t_i + \phi_i - \phi_{i-1}$$

Example: binary counter

 D_i = counter value after the *i*-th operation $\phi_i = \phi(D_i) = \#$ of 1's in D_i

Binary counter

 t_i = actual bit flip cost of operation *i* a_i = amortized bit flip cost of operation *i*

$$a_i = (b_i + 1) + (B_{i-1} - b_i + 1) - B_{i-1}$$
$$= 2$$
$$\Longrightarrow \sum t_i \le 2n$$

Dynamic tables

Problem:

Maintain a table supporting the operations insert and delete such that

- the table size can be adjusted dynamically to the number of items
- the used space in the table is always at least a constant fraction of the total space
- the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α_T : number of items stored in the table divided by the size of the table

Implementation of 'insert'

class dynamic table {

```
int [] table;
```

int size;// size of the tableint num;// number of items

```
dynamicTable() { // initialization of an empty table
  table = new int [1];
  size = 1;
  num = 0;
  }
```

Implementation of 'insert'


```
insert ( int x) {
   if (num == size ) {
        newTable = new int [2*size];
        for (i = 0; i < size; i++)
            insert table[i] into newTable;
        table = newTable;
        size = 2*size;
   }
   insert x into table;
   num = num + 1;
}
```

Cost of *n* insertions into an initially empty table

 t_i = cost of the *i*-th insert operation

Worst case:

 $t_i = 1$ if the table is not full prior to operation *i* $t_i = (i-1) + 1$ if the table is full prior to operation *i*.

Thus *n* insertions incur a total cost of at most

$$\sum_{i=1}^{n} i = \Theta(n^2)$$

Amortized worst case:

Aggregate method, accounting method, potential method

Potential method

T table with

- k = T.num items
- s = T.size size

Potential function

$$\phi(T) = 2 k - s$$

Potential method

Properties

- $\phi_0 = \phi(T_0) = \phi$ (empty table) = -1
- Immediately before a table expansion we have k = s, thus $\phi(T) = k = s$.
- Immediately after a table expansion we have k = s/2, thus $\phi(T) = 2k - s = 0$.
- For all $i \ge 1$: $\phi_i = \phi(T_i) > 0$ Since $\phi_n - \phi_0 \ge 0$,

$$\sum t_i \leq \sum a_i$$

 k_i = # items stored in T after the *i*-th operation s_i = table size of T after the *i*-th operation

Case 1: *i*-th operation does not trigger an expansion

$$k_i = k_{i-1} + 1, \ s_i = s_{i-1}$$

$$a_{i} = 1 + (2k_{i} - s_{i}) - (2k_{i-1} - s_{i-1})$$

= 1 + 2(k_{i} - k_{i-1})
= 3

Case 2: *i*-th operation does trigger an expansion

$$k_i = k_{i-1} + 1, \ s_i = 2s_{i-1}$$

$$a_i = k_{i-1} + 1 + (2k_i - s_i) - (2k_{i-1} - s_{i-1})$$

Inserting and deleting items

Now: Contract the table whenever the load becomes too small.

Goal:

- (1) The load factor is bounded from below by a constant.
- (2) The amortized cost of a table operation is constant.

First approach

- Expansion: as before
- Contraction: Halve the table size when a deletion would cause the table to become less than half full.

"Bad" sequence of table operations

	Cost
<i>n/</i> 2 'insert' op. (table is full)	3 n/2
I: expansion	<i>n/</i> 2 + 1
D, D: contraction	<i>n/</i> 2 + 1
I, I: expansion	<i>- n/</i> 2 + 1
D, D: contraction	

Total cost of the sequence of operations: $I_{n/2}$, $I, D, D, I, I, D, D, \dots$ of length *n* is

Second approach

Expansion: Double the table size when an item is inserted into a full table.

Contraction: Halve the table size when a deletion causes the table to become less than 1/4 full.

Property: At any time the table is at least $\frac{1}{4}$ full, i.e. $\frac{1}{4} \le \alpha(T) \le 1$

What is the cost of a sequence of table operations?

Analysis of 'insert' and 'delete' operations

k = T.num, s = T.size, $\alpha = k/s$

$$\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

Immediately after a table expansion or contraction:

$$s = 2k$$
, thus $\phi(T) = 0$

Analysis of an 'insert' operation

- *i*-th operation: $k_i = k_{i-1} + 1$
- Case 1: $\alpha_{i-1} \ge \frac{1}{2}$
- Case 2: $\alpha_{i-1} < \frac{1}{2}$
 - Case 2.1: $\alpha_i < \frac{1}{2}$ Case 2.2: $\alpha_i \ge \frac{1}{2}$

Analysis of an 'insert' operation

Case 2.1: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i < \frac{1}{2}$ no expansion

Potential function
$$\phi$$

 $\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$

Case 2.2: $\alpha_{i-1} < \frac{1}{2}, \alpha_i \ge \frac{1}{2}$ no expansion

$$\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

 $k_i = k_{i-1} - 1$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.1: deletion does not trigger a contraction $s_i = s_{i-1}$

$$\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$k_i = k_{i-1} - 1$$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.2: $\alpha_{i-1} < \frac{1}{2}$ deletion does trigger a contraction

 $s_i = s_{i-1}/2$ $k_{i-1} = s_{i-1}/4$

$$\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

Case 2: $\alpha_{i-1} \ge \frac{1}{2}$ no contraction

 $s_i = s_{i-1}$ $k_i = k_{i-1} - 1$

Case 2.1: $\alpha_i \ge \frac{1}{2}$

Potential function ϕ $\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$

Case 2: $\alpha_{i-1} \ge \frac{1}{2}$ no contraction

 $s_i = s_{i-1}$ $k_i = k_{i-1} - 1$

Case 2.2: $\alpha_i < \frac{1}{2}$

Potential function ϕ $\phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2 \\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$