
Algorithm TheoryAlgorithm Theory

06 A ti d A l i06 – Amortized Analysis

Dr. Alexander Souza

Amortization

• Consider a sequence a1 a2 an ofConsider a sequence a1, a2, ... , an of
n operations performed on a data structure D

• Ti = execution time of ai

• T = T1 + T2 + ... + Tn total execution timeT T1 T2 ... Tn total execution time

• The execution time of a single operation can vary within a large
range, e.g. in 1,...,n, but the worst case does not occur for all
operations of the sequence.

• Average execution time of an operation is small, even though a
single operation can have a high execution time.

2Winter Term 11/12

Analysis of algorithms

• Best caseBest case

• Worst case

• Average case

• Amortized worst case

What is the average cost of an operation in a worst case
sequence of operations?

3Winter Term 11/12

Amortization

Idea:

• Pay more for inexpensive operations
U th dit t th t f i ti• Use the credit to cover the cost of expensive operations

Three methods:

1 Aggregate method1. Aggregate method
2. Accounting method
3. Potential method

4Winter Term 11/12

Amortization = Overcharging + Bookkeeping

5Winter Term 11/12

1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost
Operation Counter value CostOperation Counter value Cost

00000
1 00001 1
2 00010 2
3 00011 1
4 00100 34 00100 3
5 00101 1
6 00110 2
7 00111
8 01000
9 010019 01001
10 01010
11 01011

6Winter Term 11/12

12 01100
13 01101

2. The accounting method

Observation:
In each increment exactly one 0 flips to 1.

Idea:
Pay two cost units for flipping a 0 to a 1Pay two cost units for flipping a 0 to a 1

each 1 has one cost unit deposited in the banking account

7Winter Term 11/12

The accounting method

Operation Counter valuep
0 0 0 0 0

1 0 0 0 0 1
2 0 0 0 1 02 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 17 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1
10 0 1 0 1 0

8Winter Term 11/12

3. The potential method

Potential function φPotential function φ

Data structure D φ(D)

ti = actual cost of the i-th operation

φi = potential after execution of the i-th operation (= φ(Di))

ai = amortized cost of the i-th operation

Definition:
ai = ti + φi - φi-1

9Winter Term 11/12

Example: binary counter

Di = counter value after the i-th operation
φ = φ(D) = # of 1‘s in Dφi = φ(Di) = # of 1 s in Di

i–th operation # of 1‘si th operation # of 1 s

Di 1: 0/1.....01.....1 Bi 1i-1 i-1

Di : 0/1.....10.....0 Bi = Bi-1 – bi + 1

ti = actual bit flip cost of operation i
= bi+1

10Winter Term 11/12

 bi+1

Binary counter

ti = actual bit flip cost of operation i
a = amortized bit flip cost of operation iai = amortized bit flip cost of operation i

() () BbBb 11() ()
=

−+−++= −− BbBba iiiii

2
2

11 11

∑ ≤⇒ nti 2

11Winter Term 11/12

Dynamic tables

Problem:
Maintain a table supporting the operations insert and delete such that

• the table size can be adjusted dynamically to the number of items
• the used space in the table is always at least a constant fraction of

the total spacethe total space
• the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α : number of items stored in the table divided by the sizeLoad factor αT: number of items stored in the table divided by the size
of the table

12Winter Term 11/12

Implementation of ‘insert’

class dynamic table {class dynamic table {

int [] table;

int size; // size of the table
i t // b f itint num; // number of items

dynamicTable() { // initialization of an empty tabledynamicTable() { // initialization of an empty table
table = new int [1];
size = 1;
num = 0;
}

13Winter Term 11/12

Implementation of ‘insert’

insert (int x) {insert (int x) {
if (num == size) {

newTable = new int [2*size];
for (i = 0; i < size; i++)

insert table[i] into newTable;
t bl T bltable = newTable;
size = 2*size;

}}
insert x into table;
num = num + 1;

}

14Winter Term 11/12

Cost of n insertions into an initially empty table

ti = cost of the i-th insert operationti cost of the i th insert operation

Worst case:

ti = 1 if the table is not full prior to operation i
t (i 1) + 1 if th t bl i f ll i t ti iti = (i – 1) + 1 if the table is full prior to operation i.

Thus n insertions incur a total cost of at mostThus n insertions incur a total cost of at most

()2

1
ni

n

i
Θ∑ =

=

Amortized worst case:
Aggregate method, accounting method, potential method

15Winter Term 11/12

Potential method

T table withT table with

• k = T.num items
• s = T.size size

Potential function

φ (T) = 2 k – s

16Winter Term 11/12

Potential method

Propertiesp
• φ0 = φ(T0) = φ (empty table) = -1

I di t l b f t bl i h k• Immediately before a table expansion we have k = s,
thus φ(T) = k = s.

• Immediately after a table expansion we have k = s/2,
thus φ(T) = 2k – s = 0.

• For all i ≥ 1 : φi = φ (Ti) > 0
Since φn - φ0 ≥ 0,

∑ ∑≤ ii at

17Winter Term 11/12

Amortized cost ai of the i-th insertion

ki = # items stored in T after the i-th operationki # items stored in T after the i th operation
si = table size of T after the i-th operation

Case 1: i-th operation does not trigger an expansion

k k + 1ki = ki-1 + 1, si = si-1

ai = 1 + (2ki - si) - (2ki-1 – si-1)
= 1 + 2(ki - ki-1)
= 3

18Winter Term 11/12

Case 2: i-th operation does trigger an expansionCase 2: i th operation does trigger an expansion

ki = ki-1 + 1, si = 2si-1

ai = ki-1 + 1 + (2ki - si) - (2ki-1 – si-1)

= 3

19Winter Term 11/12

Inserting and deleting items

Now: Contract the table whenever the load becomes too smallNow: Contract the table whenever the load becomes too small.

Goal:
(1) The load factor is bounded from below by a constant.
(2) The amortized cost of a table operation is constant.

First approach
• Expansion: as beforeExpansion: as before
• Contraction: Halve the table size when a deletion would cause the

table to become less than half full.

20Winter Term 11/12

„Bad“ sequence of table operations

CostCost

n/2 ‘insert’ op.
(table is full)

3 n/2

I: expansion n/2 + 1

D, D: contraction n/2 + 1

I, I : expansion n/2 + 1I, I : expansion n/2 1

D, D: contraction

Total cost of the sequence of operations:
In/2, I,D,D,I,I,D,D,... of length n is

21Winter Term 11/12

Second approach

Expansion: Double the table size when an item is inserted intop
a full table.

C t ti H l th t bl i h d l ti th t bl tContraction: Halve the table size when a deletion causes the table to
become less than ¼ full.

Property: At any time the table is at least ¼ full, i.e.
¼ ≤ α(T) ≤ 1

What is the cost of a sequence of table operations?What is the cost of a sequence of table operations?

22Winter Term 11/12

Analysis of ‘insert’ and ‘delete’ operations

k = T num s = T size α = k/sk = T.num, s = T.size, α = k/s

P t ti l f ti φPotential function φ

⎧ ≥ 2/1if2k()
⎩
⎨
⎧

<−
≥−

=
2/1 if ,2/

2/1if,2
α

α
φ

ks
sk

T

23Winter Term 11/12

Analysis of ‘insert’ and ‘delete’ operations

()
⎩
⎨
⎧

<
≥−

=
2/1if2/

2/1 if ,2 α
φ

k
sk

T
⎩
⎨ <− 2/1if,2/ αks

Immediately after a table expansion or contraction:

s = 2k, thus φ(T) = 0

24Winter Term 11/12

Analysis of an ‘insert’ operation

i-th operation: ki = ki 1 + 1i th operation: ki ki-1 1

Case 1: αi-1 ≥ ½

Case 2: αi-1 < ½

Case 2.1: αi < ½
Case 2.2: αi ≥ ½

25Winter Term 11/12

Analysis of an ‘insert’ operation

Case 2 1: αi 1 < ½ αi < ½ no expansionCase 2.1: αi-1 ½, αi ½ no expansion

Potential function φ

()
⎩
⎨
⎧

<−
≥−

=
2/1if,2/

2/1 if ,2
α

α
φ

ks
sk

T
⎩

26Winter Term 11/12

Analysis of an ‘insert’ operation

Case 2.2: αi 1 < ½, αi ≥ ½ no expansioni-1 , i p

Potential function φ

()
⎩
⎨
⎧

<
≥−

=
2/1if2/

2/1 if ,2
α

α
φ

ks
sk

T

Potential function φ

⎩ <− 2/1if,2/ αks

27Winter Term 11/12

Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1: αi-1 < ½

Case 1.1: deletion does not trigger a contractiongg
si = si-1

Potential function φ

()
⎩
⎨
⎧

<
≥−

=
2/1if2/

2/1 if ,2
α

α
φ

ks
sk

T

Potential function φ

⎩ <− 2/1if,2/ αks

28Winter Term 11/12

Analysis of a ‘delete’ operation

ki = ki-1 - 1

Case 1.2: αi-1 < ½ deletion does trigger a contraction

Case 1: αi-1 < ½

si = si –1 /2 ki-1 = si-1/4

() ⎨
⎧ ≥−

=
2/1 if ,2 α

φ
sk

T

Potential function φ

()
⎩
⎨ <−

=
2/1 if ,2/ α

φ
ks

T

29Winter Term 11/12

Analysis of a ‘delete’ operation

Case 2: αi-1 ≥ ½ no contraction

si = si –1 ki = ki-1 - 1

C 2 1 ≥ ½Case 2.1: αi ≥ ½

Potential function φ

()
⎩
⎨
⎧ ≥−

=
2/1if2/

2/1 if ,2 α
φ

k
sk

T

Potential function φ

()
⎩
⎨ <− 2/1if,2/ α

φ
ks

30Winter Term 11/12

Analysis of a ‘delete’ operation

Case 2: αi-1 ≥ ½ no contraction

si = si –1 ki = ki-1 - 1

C 2 2 ½Case 2.2: αi < ½

() ⎨
⎧ ≥−

=
2/1 if ,2 α

φ
sk

T

Potential function φ

()
⎩
⎨ <−

=
2/1 if ,2/ α

φ
ks

T

31Winter Term 11/12

