

Algorithm Theory

06 – Amortized Analysis

Dr. Alexander Souza

Amortization

- Consider a sequence a₁, a₂, ..., a_n of
 n operations performed on a data structure *D*
- T_i = execution time of a_i
- $T = T_1 + T_2 + \dots + T_n$ total execution time
- The execution time of a single operation can vary within a large range, e.g. in 1,...,n, but the worst case does not occur for all operations of the sequence.
- <u>Average execution time of an operation is small, even though a</u> single operation can have a high execution time.

Winter Term 11/12

Analysis of algorithms

- Best case
- Worst case
- Average case
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Amortization

Idea:

- Pay more for inexpensive operations
- Use the credit to cover the cost of expensive operations

Three methods:

- 1. Aggregate method
- 2. Accounting method
- 3. Potential method

Amortization = Overcharging + Bookkeeping
$$\widehat{P}_{II}$$

Want to glaw: Autorogy cost ≤ 2 by propring 2 units per growthin and bookkeeping
 \widehat{P}_{A}
Credit:
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ and
Since (redit nerves becomes negative the average cost per operation is
at most two.
 1 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{7}$

Winter Term 11/12

1. Aggregate method: binary counter

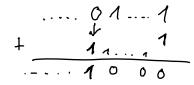
Incrementing a binary counter: determine the bit flip cost

Operation	Counter value	Cost	
	00000		. 23
1	00001	1	Average cart $\frac{23}{13} < 2$
2	00010	2	on a sequence of 13
3	00011	1	Operations.
~ 4	00100	3	How is this shown
5	00101	1	in general ?
6	00110	2	In aggregate method
7	00111	1	mer tries to extrimate
~ 8	01000	4	In aggregate method mer pries to extrimate 1. Ž. Ti directly
9	01001	1	
10	01010	2	Difficult to evaluate in general.
11	01011	1	n gruesal.
12	01100	3	
13	01101	1/23	
Winter Term 11/12	1	/ LS	6

2. The accounting method

Observation:

In each increment exactly one 0 flips to 1.



Idea:

Pay two cost units for flipping a 0 to a 1
→ each 1 has one cost unit deposited in the banking account (*)
Y we can show that the account is never negetive, we have shown O(1) and average cost per operation.
(*) We do not pay for flipping a 1 to a 0.

Winter Term 11/12

The accounting method

bit flips

		J	I _			
Operation	Counter value	Cost	Payment	Credit		
	00000					
1	00001	1	2	(1)		
2	00010	2	0+2=2	o, (À		
3	00011	1	2	(2)		
4	00100	3	0+0+2 = 2	1, 0, (1)		
5	00101	1	2	(2)		
6	00110	2		$\langle S \rangle$		
7	00111	1	,	3		
8	01000	4		(1)		
9	01001	1				
10	0 1 0 <mark>1 0</mark>	2				
Observation: The credit is always equal to the number of 1's in the bit strong.						
Winter Term 11/12	This is be cause when we flip	L 1 to	, pay two units 0.	into the account 8		

3. The potential method

Potential function
$$\phi$$
 ϕ $\mathcal{D} \longrightarrow \mathcal{R}$

Data structure $D \rightarrow \phi(D)$

 t_i = actual cost of the *i*-th operation

 ϕ_i = potential after execution of the *i*-th operation (= $\phi(D_i)$)

 a_i = amortized cost of the *i*-th operation

Definition:

$$a_{ij} = t_{i} + \phi_{i} - \phi_{i-1}$$

 $a_{ij} = t_{i} + \phi_{i} - \phi_{i-1}$
 $a_{ij} = t_{i} + \phi_{i} - \phi_{i-1}$
 $a_{ij} = t_{i} + \phi_{i} - \phi_{i-1}$

Example: binary counter

 $\phi_i = \phi(D_i) = \#$ of 1's in D_i

 D_i = counter value after the *i*-th operation

$$\phi: D \longrightarrow \# 1's \text{ in } D$$

 $\begin{array}{c} \underline{i + \text{th operation}} \\ \Rightarrow D_{i-1}: \dots 0/1 \dots 01 \dots 1 \\ + 1 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 10 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0 \\ \hline D_{i}: \dots 0/1 \dots 0 \\ \hline D_{i}: \dots 0 \\ \hline D_{i$

$$t_{i} = \underbrace{\text{actual bit flip cost of operation } i}_{= b_{i}+1}$$

$$What is a_{i} \neq i$$

$$a_{i} = t_{i} + \phi_{i} - \phi_{i-1} = b_{i} + A + B - b_{i} + A - B - b_{i-1}$$
Winter Term 11/12
$$U = 2$$

$$10$$

Binary counter

 $t_i = \frac{\text{actual bit flip cost of operation } i}{a_i} = \frac{1}{\text{amortized bit flip cost of operation } i}$

$$a_{i} = (b_{i} + 1) + (B_{i-1} - b_{i} + 1) - B_{i-1}$$

$$= 2$$

$$\Rightarrow \sum t_{i} \le 2n \qquad \Rightarrow \qquad \frac{1}{n} \cdot \sum_{i=n}^{n} t_{i} \le 2$$

$$\sum_{i=n}^{n} t_{i} = \sum_{i=n}^{n} (a_{i} + \phi_{i-n} - \phi_{i}) = \sum_{i=n}^{n} a_{i} + \sum_{i=n}^{n} (\phi_{i-n} - \phi_{i}) =$$

$$= \sum_{i=n}^{n} a_{i} + \phi_{i} - \phi_{i} = \sum_{i=n}^{n} t_{i} \le t_{i} \le$$

Dynamic tables

Problem:

Maintain a table supporting the operations insert and delete such that

- the table size can be adjusted dynamically to the number of items
- the used space in the table is always at least a constant fraction of the total space
- the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α_T : number of items stored in the table divided by the size of the table