
Algorithm TheoryAlgorithm Theory

08 Fib i H08 – Fibonacci Heaps

Dr. Alexander Souza

Winter term 11/12

Priority queues: operations

Priority queue Qy q

Operations:

Q.initialize(): initializes an empty queue Q
Q isEmpty(): returns true iff Q is emptyQ.isEmpty(): returns true iff Q is empty
Q.insert(e): inserts element e into Q and returns a pointer to the node

containing e
Q.deletemin(): returns the element of Q with minimum key and deletes it
Q.min(): returns the element of Q with minimum key
Q decreasekey(v k): decreases the value of v‘s key to the new value kQ.decreasekey(v,k): decreases the value of v s key to the new value k

2Winter term 11/12

Priority queues: operations

Additional operations:Additional operations:

Q.delete(v) : deletes node v and its element from Q
(without searching for v)

Q meld(Q´): unites Q and Q´ (concatenable queue)Q.meld(Q): unites Q and Q (concatenable queue)

Q.search(k) : searches for the element with key k in Q() y
(searchable queue)

And man more e g predecessor s ccessor ma deletemaAnd many more, e.g. predecessor, successor, max, deletemax

3Winter term 11/12

Priority queues: implementations

List Heap Bin. – Q. Fib.-Hp.

insert O(1) O(log n) O(log n) O(1)

min O(n) O(1) O(log n) O(1)

delete-
min O(n) O(log n) O(log n) O(log n)*

meld
(m≤n) O(1)

O(n) or
O(m log n)

O(log n) O(1)

decr.-key O(1) O(log n) O(log n) O(1)*

*= amortized cost
Q delete(e) = Q decreasekey(e -∞) + Q deletemin()

4Winter term 11/12

Q.delete(e) = Q.decreasekey(e, ∞) + Q.deletemin()

Fibonacci heaps

„Lazy-meld“ version of binomial queues:„Lazy meld version of binomial queues:
The melding of trees having the same order is delayed until the next
deletemin operation.

Definition
A Fib i h Q i ll ti h d d tA Fibonacci heap Q is a collection heap-ordered trees.

VariablesVariables
Q.min: root of the tree containing the minimum key
Q.rootlist: circular, doubly linked, unordered list containing the roots

of all trees
Q.size: number of nodes currently in Q

5Winter term 11/12

Trees in Fibonacci heaps

Let B be a heap-ordered tree in Q.rootlist:

B.childlist: circular, doubly linked and unordered list of the children of B

Structure of a node parent

left

rightkey degree

child markchild mark

Advantages of circular, doubly linked lists:

1. Deleting an element takes constant time.
2. Concatenating two lists takes constant time.

6Winter term 11/12

Co cate at g t o sts ta es co sta t t e

Implementation of Fibonacci heaps: Examplep p p

7Winter term 11/12

Operations on Fibonacci heaps

Q initialize(): Q rootlist = Q min = nullQ.initialize(): Q.rootlist Q.min null

Q.meld(Q´):
1. concatenate Q.rootlist and Q´.rootlist
2. update Q.min

Q.insert(e):
1. generate a new node with element e Q´1. generate a new node with element e Q
2. Q.meld(Q´)

Q.min():
return Q.min.key

8Winter term 11/12

Fibonacci heaps: ‘deletemin’

Q deletemin()Q.deletemin()
/*Delete the node with minimum key from Q and return its element.*/
1 m = Q.min()
2 if Q.size() > 0
3 then remove Q.min() from Q.rootlist
4 dd Q i hildli t t Q tli t4 add Q.min.childlist to Q.rootlist
5 Q.consolidate()

/* Repeatedly meld nodes in the root list having the same/ Repeatedly meld nodes in the root list having the same
degree. Then determine the element with minimum key. */

6 return m

9Winter term 11/12

Fibonacci heaps: maximum degree of a nodep g

rank(v) = degree of node v in Qrank(v) degree of node v in Q
rank(Q) = maximum degree of any node in Q

Assumption:
rank(Q) ≤ 2 log n,

if Q.size = n.

10Winter term 11/12

Fibonacci heaps: operation ‘link’

rank(B) = degree of the root of B
Heap-ordered trees B,B´ with rank(B) = rank(B´)

B B´

link

Heap ordered trees B,B with rank(B) rank(B)

B

B

1. rank(B) = rank(B) + 1
2. B´.mark = false

B

B´

11Winter term 11/12

Consolidation of the root list

12Winter term 11/12

Consolidation of the root list

13Winter term 11/12

Fibonacci heaps: ‘deletemin’

Find roots having the same rank:
Array A:y

0 1 2 log n0 og

Q.consolidate()

1 A f l th 2 l i ti t Fib i h d1 A = array of length 2 log n pointing to Fibonacci heap nodes
2 for i = 0 to 2 log n do A[i] = null
3 while Q.rootlist ≠ ∅ do
4 B = Q.delete-first()
5 while A[rank(B)] is not null do
6 B´ = A[rank(B)]; A[rank(B)] = null; B = link(B,B´)[()] [()] ()
7 end while
8 A[rank(B)] = B
9 end while

14Winter term 11/12

9 end while
10 determine Q.min

