

Algorithm Theory

08 – Fibonacci Heaps

Dr. Alexander Souza

Winter term 11/12

Priority queues: operations

Priority queue **Q**

Operations:

Q.initialize(): initializes an empty queue Q

Q.isEmpty(): returns true iff Q is empty

Q.insert(e): inserts element e into Q and returns a pointer to the node containing e

Q.deletemin(): returns the element of Q with minimum key and deletes it

Q.min(): returns the element of Q with minimum key

Q.decreasekey(v,k): decreases the value of v's key to the new value k

Priority queues: operations

Additional operations:

Q.delete(v): deletes node v and its element from Q (without searching for v)

Q.meld(Q'): unites Q and Q'(concatenable queue)

Q.search(k) : searches for the element with key k in Q (searchable queue)

And many more, e.g. *predecessor, successor, max, deletemax*

Priority queues: implementations

_					-
		List	Неар	Bin. – Q.	FibHp.
	insert	O(1)	O(log n)	O(log n)	O(1)
	min	O(n)	O(1)	O(log n)	O(1)
	delete- min	O(n)	O(log n)	O(log n)	O(log n)*
	meld (m≤n)	O(1)	O(n) or O(m log n)	O(log n)	O(1)
	decrkey	O(1)	O(log n)	O(log n)	O(1)*

*= amortized cost

 $Q.delete(e) = Q.decreasekey(e, -\infty) + Q.deletemin()$

Fibonacci heaps

"Lazy-meld" version of binomial queues:

The melding of trees having the same order is delayed until the next deletemin operation.

Definition

A Fibonacci heap Q is a collection heap-ordered trees.

Variables

Q.min: root of the tree containing the minimum key

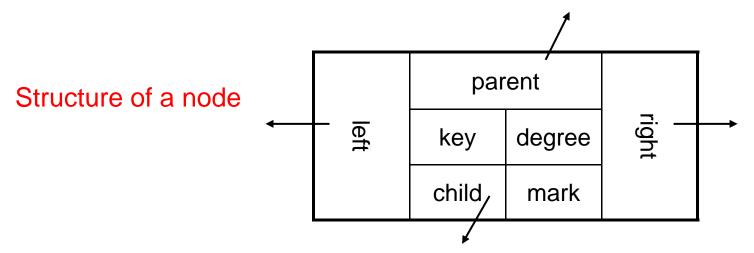
Q.rootlist: circular, doubly linked, unordered list containing the roots of all trees

Q.size: number of nodes currently in Q

Trees in Fibonacci heaps

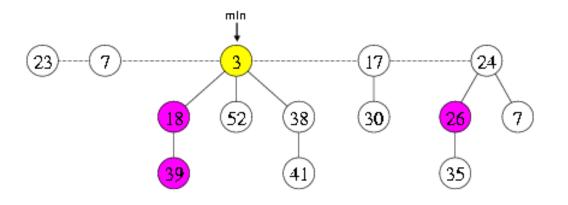
Let *B* be a heap-ordered tree in *Q.rootlist*.

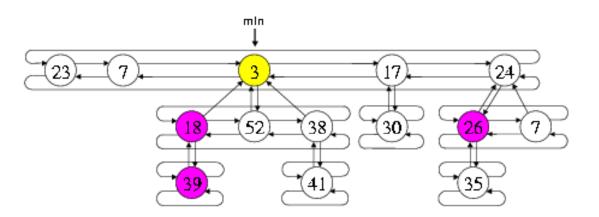
B.childlist: circular, doubly linked and unordered list of the children of B



Advantages of circular, doubly linked lists:

- 1. Deleting an element takes constant time.
- 2. Concatenating two lists takes constant time.





Operations on Fibonacci heaps

Q.initialize(): Q.rootlist = Q.min = null

Q.meld(Q'):

1. concatenate Q.rootlist and Q'.rootlist

2. update Q.min

Q.insert(e):

1. generate a new node with element $e \rightarrow Q'$

2. Q.meld(Q')

Q.min():

return Q.min.key

all fliere aporations take constant time

Fibonacci heaps: 'deletemin'

Q.deletemin()

/*Delete the node with minimum key from Q and return its element.*/

- 1 m = Q.min()
- 2 if Q.size() > 0
- 3 then remove *Q.min()* from *Q.rootlist*
- 4 add Q.min.childlist to Q.rootlist
- 5 Q.consolidate()
 - /* <u>Repeatedly meld nodes in the root list having the same</u> degree. Then determine the element with minimum key. */
- 6 return m

rank(v) = degree of node v in Qrank(Q) = maximum degree of any node in Q

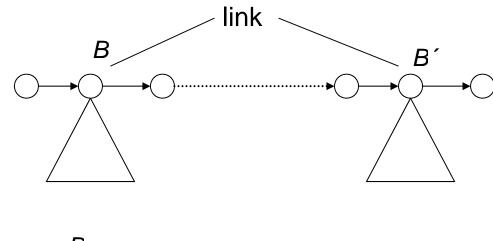
Assumption:

 $rank(Q) \leq 2 \log n$,

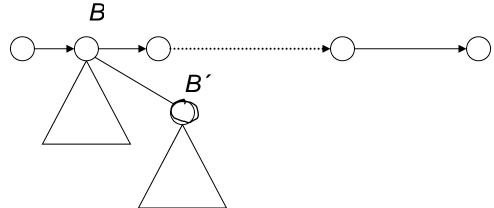
if Q.size = n.

Fibonacci heaps: operation 'link'

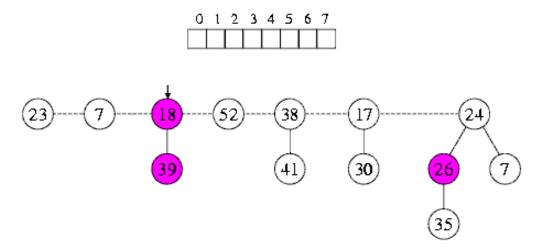
rank(B) = degree of the root of B
Heap-ordered trees B,B´ with rank(B) = rank(B´)

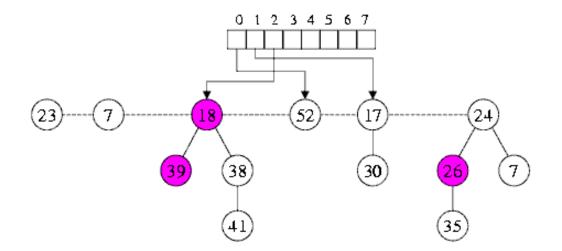


rank(B) = rank(B) + 1
 B´.mark = false

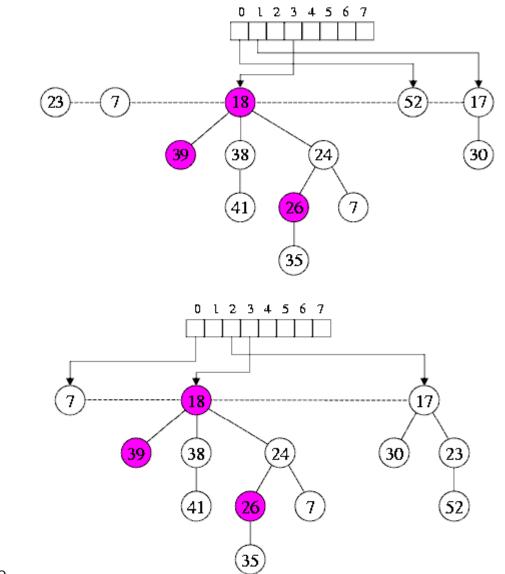


Consolidation of the root list





Consolidation of the root list



Fibonacci heaps: 'deletemin'

Find roots having the same rank: Array <u>A</u>:

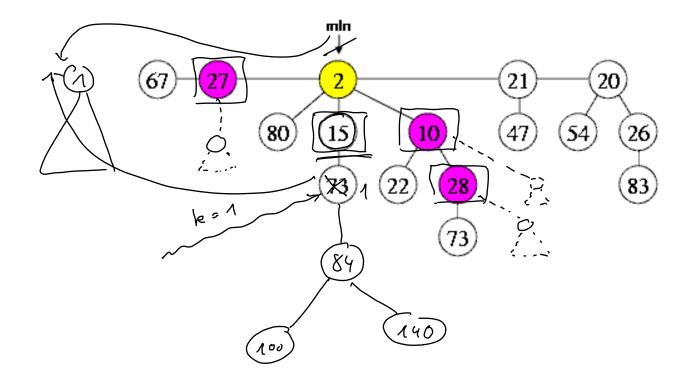
Q.consolidate()

A = array of length 2 log *n* pointing to Fibonacci heap nodes for *i* = 0 to 2 log *n* do *A*[*i*] = null 2 while Q.rootlist $\neq \emptyset$ do 3 4 B = Q.delete-first()5 while A[rank(B)] is not null do B' = A[rank(B)]; A[rank(B)] = null; B = link(B,B')6 7 end while A[rank(B)] = B8 Check all roots affer consolidation. Tales O(logn) time because now there are at most 2. log n roots. 9 end while 10 determine *Q.min* Winter term 11/12

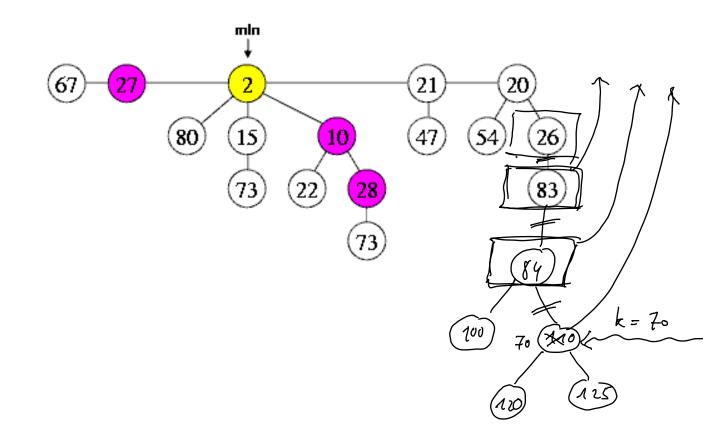
14

Fibonacci heap: Example

Decreon Key

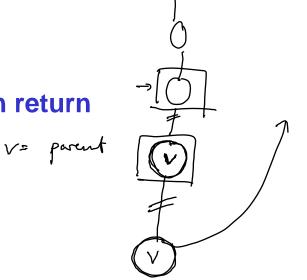


Fibonacci heap: Example



Q.decreasekey(v,k)

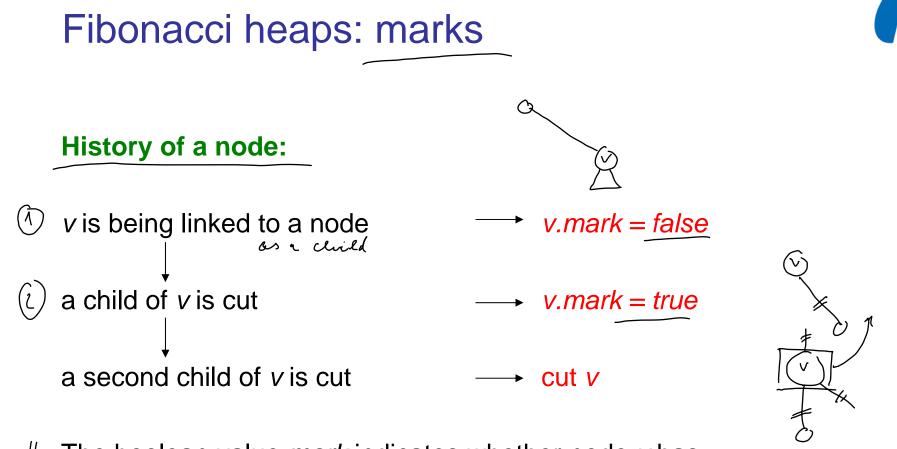
- 1 if *k* > *v*.*key* then return
- 2 v.key = k
- 3 update Q.min
- 4 if $v \in Q$.rootlist or $k \ge v$.parent.key then return
- 5 do /* cascading cuts */
- 6 *parent = v.parent*
- 7 Q.cut(v)
- 8 v = parent
- 9 while *v.mark* and *v*∉ *Q.rootlist*
- 10 if $v \notin Q$.rootlist then v.mark = true



Fibonacci heaps: 'cut'

Q.cut(v)

- 1 if v ∉ Q.rootlist
- 2 then /* cut the link between v and its parent */
- 3 rank (v.parent) = rank (v.parent) 1
- 4 remove *v* from *v.parent.childlist*
- 5 v.parent = null
- 6 add *v* to *Q.rootlist*



The boolean value *mark* indicates whether node *v* has lost a child since the last time *v* was made the child of another node.

Lemma

Proof:

20

At the time when u_i was linked to v:

children of v (rank(v)): $\geq i - 1$

children of u_i (rank (u_i)): $\geq i - 1$

children u_i may have lost: 1

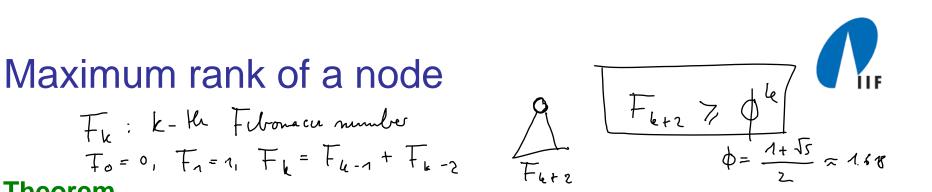
rank (V) = vank (U;) \vee 2-1 rank (u;) 7 i-1 Vank (u;) 7 i-2.

(u.

of *v* in the order in which they were linked to *v*. Then:

 $rank(u_i) \geq i - 2$.

Let <u>v</u> be a node in a Fibonacci-Heap Q. Let u_1, \dots, u_k denote the children



Theorem

Let v be a node in a Fibonacci heap Q, and let rank(v) = k. Then v is the root of a subtree that has at least F_{k+2} nodes.

The number of descendants of a node grows exponentially in the number of children.

Implication:

The maximum rank *k* of any node *v* in a Fibonacci heap *Q* with *n* nodes satisfies:

$$\phi^{k} \leq n$$

 $k \leq \log_{\phi} n = \frac{\log_{2} n}{\log_{1} \phi} = 1.41 \cdot \log_{2} n \leq 2 \cdot \log_{2} n$

Maximum rank of a node

Proof $S_{k} = \text{minimum possible size of a <u>subtree</u> whose root has rank k}$ $S_{0} = 1$ $S_{1} = 2$ $S_{1} = 2$ $S_{k} \ge 2 + \sum_{i=0}^{k-2} S_{i} \text{ for } k \ge 2$ (1) $S_{k} \ge 2 + \sum_{i=0}^{k-2} S_{i} \text{ for } k \ge 2$

Fibonacci numbers:

$$F_{k+2} = 1 + \sum_{i=0}^{k} F_i$$
(2)
= 1 + F_0 + F_1 + ... + F_k
(1) + (2) + induction $\rightarrow S_k \ge F_{k+2}$

Analysis of Fibonacci heaps

Potential method to analyze Fibonacci heap operations.

Potential Φ_Q of Fibonacci heap Q:

 $\Phi_{\rm Q} = r_{\rm Q} + 2 m_{\rm Q}$

where

 r_Q = number of nodes in *Q.rootlist* m_Q = number of all marked nodes in *Q*, that are not in the root list.

Amortized analysis

Amortized cost a_i of the *i*-th operation:

$$a_{i} = t_{i} + \Phi_{i} - \Phi_{i-1}$$

= $t_{i} + (r_{i} - r_{i-1}) + 2(m_{i} - m_{i-1})$

Analysis of 'insert'

insert

 $t_i = 1$

 $r_i - r_{i-1} = 1$

 $m_i - m_{i-1} = 0$

 $a_i = 1 + 1 + 0 = O(1)$

Analysis of 'deletemin'

deletemin:

 $t_i = r_{i-1} + 2 \log n$ $r_i - r_{i-1} \le 2 \log n - r_{i-1}$ $m_i - m_{i-1} \le 0$

$$a_i \le r_{i-1} + 2 \log n + 2 \log n - r_{i-1} + 0$$

= $O(\log n)$

Analysis of 'decreasekey'

decreasekey:

 $t_{i} = c + 2$ $r_{i} - r_{i-1} = c + 1$ $m_{i} - m_{i-1} \le -c + 1$ $a_{i} \le c + 2 + c + 1 + 2(-c + 1)$

Priority queues: comparison

	List	Неар	Bin. – Q.	FibHp.
insert	O(1)	O(log n)	O(log n)	O(1)
min	O(n)	O(1)	O(log n)	O(1)
delete- min	O(n)	O(log n)	O(log n)	O(log n)*
meld (m≤n)	O(1)	O(n) or O(m log n)	O(log n)	O(1)
decrkey	O(1)	O(log n)	O(log n)	O(1)*

* = amortized cost