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Union-find data structures

Problem:Problem:
Maintain a collection of disjoint sets while supporting the following 
operations:

e.make-set(): Creates a new set whose only member is e.

e.find-set(): Returns the set Mi containing e.() i g

union(Mi , Mj ): Unites the sets Mi and Mj into a new set.
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Union-find data structures

Representation of set Mi :

Mi is identified by a representative, which is some
b f Mmember of Mi.
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Union-find data structures

Operations using representatives:

e.make-set():
Creates a new set whose only member is e The representative is eCreates a new set whose only member is e. The representative is e.

e.find-set():
Returns the name of the representative of the set containing e.

i (f)e.union(f):
Unites the sets Me and Mf that contain e and f into a new set M and 
returns a member of Me ∪ Mf as the new representative of M.e f p
The sets Me and Mf are then „destroyed“.

4Winter term 11/12



Observations

If n is the number of make-set operations and m the total number ofIf n is the number of make set operations and m the total number of 
make-set, find-set and union operations, then

m >= n
after (n – 1) union operations, only one set remains in the 
collectioncollection
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Application: Connected componentsApplication: Connected components

Input: graph  G = (V,E)p g p ( , )
Output: collection of the connected components of G

Al ith C t d C tAlgorithm: Connected-Components
for all v in V do v.make-set()
for all (u,v) in E do( )

if u.find-set() ≠ v.find-set()
then u.union(v)

Same-Component (u,v):
if u.find-set() = v.find-set()
then return true
else return false
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Linked-list representation

e b f ae b f a
• x.make-set()
• x.find-set()

x union(y)• x.union(y)

g h d
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Linked-list representation

b.union(d)

e b f a g h de b f a g h d
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„Bad“ sequence of operations

e1e1.make-set() 1

e2e2.make-set()

enen.make-set()

e2 union(e1) e1e2 e1e2
e2.union(e1)

e3.union(e2) e3 e1e2 e3 e1e2

en.union(en-1) en e1en-1 en e1en-1

The longer list is always appended to the shorter list!
Pointer updates for the i-th operation ei.union(ei-1):  
R i ti f 2 1 ti
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Improvement

Weighted-union heuristic

Always append the smaller list to the longer list. 
(Maintain the length of a list as a parameter).

Theorem
Using the weighted-union heuristic, the running time of a sequence of mg g , g q
make-set, find-set, and union operations, n of which are make-set() operations,
is O(m + n log n).
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Proof

Consider element eConsider element e.
Number of times e‘s pointer to the representative is updated: log n
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Disjoint-set forests
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• a.make-set()
• y.find-set()
• d.union(e): Make the representative of one set (e.g. f) the parent of

the representative of the other set.
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Example

m = total number of operations ( ≥ 2n )

for i = 1 to n do ei.make-set( )
for i = 2 to n do ei.union(ei -1)
for i = 1 to f do e1.find-set( )

n-th step

nn

running time of f find-set operations: O(f * n)
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Union by size 

additional variable:additional variable:
e.size = (# nodes in the subtree rooted at e)

e.make-set()
1  e.parent = e
2 i 12  e.size = 1

e.union(f)e.union(f)
1  link(e.find-set( ), f.find-set( ))
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Union by size

link(e f)link(e,f)

1 if e.size ≥ f.size
2 then f.parent = e
3 e.size = e.size + f.size
4 l /* i < f i */4 else /* e.size < f.size */
5 e.parent = f
6 f.size = e.size + f.size6 f.size  e.size  f.size
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Union by size

Theorem
The method union by size maintains the following invariant:The method union-by-size maintains the following invariant:

A tree of height h contains at least 2h nodes.

Proof

h1                                                                  h2T1 T2

2hT ≥ 2hT ≥1211
hTg ≥= 2222

hTg ≥=

T
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Union by size

Case 1: The height of the new tree is equal to the height of T1.g q g 1

12121
hggg ≥≥+

Case 2: The new tree T has a greater height.
height of T:  h2 + 1

1
21

222 222 +=+≥+= hhhggg

Consequence

Th i ti f fi d t ti i O( l ) h i thThe running time of a find-set operation is O( log n ), where n is the 
number of make-set operations.
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Path compression during ‘find-set’ operationsPath compression during find set operations

e.find-set()
1 if e ≠ e.parent
2 then e.parent = e.parent.find-set( )
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3   return e.parent



Analysis of the running time

m total number of operationsm total number of operations, 

f of which are find-set operations and 
n of which are make-set operations

at most n – 1 union operations

Union by size:
O(n + f log n)O(n  f log n)

find-set operation with path compression:
If f < n, Θ(n + f log n)
If f ≥ n, Θ(f log1 +f/n n)
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Analysis of the running time

Theorem (Union by size with path compression)Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the 
running time of m disjoint-set operations on n elements is

Θ(m * α (m,n) ),

where α (m,n) is the inverse of Ackermann’s function.
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Ackermann’s function and its inverse

Ackermann’s functionAckermann s function

A(1,j) = 2j for j ≥ 1
A(i,1) = A(i – 1,2)   for i ≥ 2
A(i,j)  = A(i – 1, A(i, j - 1)) for i,j ≥ 2

inverse of Ackermann’s function

⎣ ⎦( ){ }nnmiAinm log/,1min),( >≥=α
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Ackermann’s function and its inverse
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