

Algorithm Theory

09 - Union-Find Data Structures

Dr. Alexander Souza

Union-find data structures

Problem:

Maintain a collection of disjoint sets while supporting the following operations:

e.make-set(): Creates a new set whose only member is e.

e.find-set(): Returns the set M_i containing e.

union (M_i, M_j) : Unites the sets M_i and M_j into a new set.

Union-find data structures

Representation of set M_i :

 M_i is identified by a **representative**, which is some member of M_i .

Union-find data structures

Operations using representatives:

e.make-set():

Creates a new set whose only member is e. The representative is e.

e.find-set():

Returns the name of the representative of the set containing e.

e.union(f):

Unites the sets M_e and M_f that contain e and f into a new set M and returns a member of $M_e \cup M_f$ as the new representative of M. The sets M_e and M_f are then "destroyed".

Observations

If n is the number of make-set operations and m the total number of make-set, find-set and union operations, then

- = m >= n
- after (n-1) union operations, only one set remains in the collection

Application: Connected components

Input: graph G = (V, E)

Output: collection of the connected components of G

Algorithm: Connected-Components

for all v in V do v.make-set() for all (u,v) in E do if u.find-set() $\neq v$.find-set() then u.union(v)

Same-Component (u,v): **if** u.find-set() = v.find-set() **then return** true

else return false

Linked-list representation

g h d

- x.make-set()
- x.find-set()
- x.union(y)

Linked-list representation

b.union(d)

"Bad" sequence of operations

The longer list is always appended to the shorter list!

Pointer updates for the *i*-th operation e_i . union(e_{i-1}): Running time of 2n -1 operations:

Improvement

Weighted-union heuristic

Always append the smaller list to the longer list. (Maintain the length of a list as a parameter).

Theorem

Using the weighted-union heuristic, the running time of a sequence of m make-set, find-set, and union operations, n of which are make-set() operations, is $O(m + n \log n)$.

Winter term 11/12 10

Proof

Consider element e.

Number of times e's pointer to the representative is updated: $\log n$

Winter term 11/12 11

Disjoint-set forests

- a.make-set()
- y.find-set()
- *d.union(e):* Make the representative of one set (e.g. *f*) the parent of the representative of the other set.

Example


```
m = total number of operations ( \geq 2n )

for i = 1 to n do e_i. make-set()

for i = 2 to n do e_i. union(e_{i-1})

for i = 1 to f do e_i. find-set()
```

n-th step

running time of f find-set operations: O(f * n)

additional variable:

e.size = (# nodes in the subtree rooted at e)

e.make-set()

- 1 e.parent = e
- 2 e.size = 1

e.union(f)

1 link(e.find-set(), f.find-set())

link(e,f)

```
1 if e.size \ge f.size
2 then f.parent = e
3 e.size = e.size + f.size
4 else /* e.size < f.size */
5 e.parent = f
6 f.size = e.size + f.size
```


Theorem

The method union-by-size maintains the following invariant:

A tree of height h contains at least 2^h nodes.

Proof

$$g_2 = |T_2| \ge 2^{h_2}$$

Case 1: The height of the new tree is equal to the height of T_1 .

$$g_1 + g_2 \ge g_1 \ge 2^{h_1}$$

Case 2: The new tree *T* has a greater height.

height of T: $h_2 + 1$

$$g = g_1 + g_2 \ge 2^{h_2} + 2^{h_2} = 2^{h_2+1}$$

Consequence

The running time of a *find-set* operation is $O(\log n)$, where n is the number of *make-set* operations.

Path compression during 'find-set' operations


```
e.find-set()
```

- 1 if e ≠ e.parent
- 2 **then** *e.parent* = *e.parent.find-set()*
- 3 return e.parent

Analysis of the running time

m total number of operations,

f of which are find-set operations and

n of which are *make-set* operations

 \rightarrow at most n-1 union operations

Union by size:

 $O(n + f \log n)$

find-set operation with path compression:

If f < n, $\Theta(n + f \log n)$ If $f \ge n$, $\Theta(f \log_{1 + f/n} n)$

Analysis of the running time

Theorem (Union by size with path compression)

Using the combined *union-by-size* and *path-compression* heuristic, the running time of m disjoint-set operations on n elements is

$$\Theta(m * \alpha (m,n)),$$

where α (*m*,*n*) is the inverse of Ackermann's function.

Ackermann's function and its inverse

Ackermann's function

$$A(1,j) = 2^{j}$$
 for $j \ge 1$
 $A(i,1) = A(i-1,2)$ for $i \ge 2$
 $A(i,j) = A(i-1, A(i, j-1))$ for $i,j \ge 2$

inverse of Ackermann's function

$$\alpha(m,n) = \min\{i \ge 1 | A(i,\lfloor m/n \rfloor) > \log n\}$$

Ackermann's function and its inverse

$$A(i, \lfloor m/n \rfloor) \ge A(i,1)$$

$$A(2,1) = A(1,2) = 2^{2} = 4$$

$$A(3,1) = A(2,2) = A(1, A(2,1)) = 2^{4} = 16$$

$$A(4,1) = A(3,2) = A(2, A(3,1)) = A(2,16)$$

$$\ge 2^{2^{2^{2^{2}}}} = 2^{65536}$$

 $\alpha(m,n) \le 4$, for n satisfying $\log n < 2^{65536}$