

Algorithm Theory

09 – Union-Find Data Structures

Dr. Alexander Souza

Winter term 11/12

Winter term 11/12

Union-find data structures

Problem:

Maintain a <u>collection</u> of <u>disjoint sets</u> while supporting the following operations:

e.make-set(): Creates a new set whose only member is *e*.

e.find-set(): Returns the set M_i containing *e*.

union (M_i, M_i) : Unites the sets M_i and M_i into a new set.

Union-find data structures

Representation of set M_i :

 M_i is identified by a **representative**, which is some member of M_i .

Union-find data structures

Operations using representatives:

e.make-set():

Creates a new set whose only member is *e*. The representative is *e*.

e.find-set():

Returns the name of the representative of the set containing e.

e.union(f):

Unites the sets M_e and M_f that contain e and f into a new set M and returns a member of $M_e \cup M_f$ as the new representative of M.

The sets M_e and M_f are then "destroyed".

Observations

- If <u>n</u> is the number of <u>make-set</u> operations and <u>m</u> the total number of make-set, find-set and <u>union</u> operations, then
 - *m* >= *n*
 - after (n 1) union operations, only one set remains in the collection

Application: Connected components

Input: graph G = (V, E)**Output:** collection of the connected components of *G*

Linked-list representation

- x.make-set()
- x.find-set()
- x.union(y)

Linked-list representation

b.union(d)

Pointer updates for the *i*-th operation e_i . union (e_{i-1}) : Running time of 2n -1 operations: $m_{+} \sum_{i=1}^{n} i = m_{+} \frac{m \cdot (m-n)}{2} = O(m^{2})$

Winter term 11/12

Improvement

Weighted-union heuristic

Always <u>append</u> the smaller list to the <u>longer list</u>. (Maintain the length of a list as a parameter).

Theorem

Using the weighted-union heuristic, the running time of a sequence of \underline{m}

make-set, find-set, and *union* operations, *n* of which are *make-set()* operations,

is $O(m + n \log n)$.

Proof

Consider element e.

Number of times e's pointer to the representative is updated: log n

