Algorithm Theory

09 — Union-Find Data Structures

Dr. Alexander Souza

Winter term 11/12

Union-find data structures

Problem:
Maintain a collection of disjoint sets while supporting the following
operations: -
e.make-set(): Creates a new set whose only member is e. @

. . . ‘Q
e.find-set(): Returns the set M. containing e. YL O

union(M;, M;): Unites the sets M; and M; into a new set.

Winter term 11/12 2

Union-find data structures

"

(PWRL;X Mo e Sk [T: al a 0“"’(_“’(' %WM o oo WH:}
[ot

Representation of set M, :

M; is identified by a representative, which is some
member of M.

Winter term 11/12 3

"

Union-find data structures

Operations using representatives:

e.make-set():
Creates a new set whose only member is e. The representative is e.

e.find-set():

Returns the name of the representative of the set containing e.

e.union(f):
Unites the sets M, and M that contain e and f into a new set M and
returns a member of M, U M; as the new representative of M.

Winter term 11/12 4

Observations

"

= |f nis the number of make-set operations and m the total number of
make-set, find-set and union operations, then

" mM>=n

= after (n — 1) union operations, only one set remains in the
collection

Winter term 11/12 5

Application: Connected components

7 \I\I 11 W WA

Input: graph G =(V,E)
Output: collection of the connected components of G

Algorithm: Connected-Components O
for all vin V do v.make-set() @vq @z v, 7 QV“

=

for all (u,v) in E do p ‘ ~
If u.find-set() = v.find-set() (@’“@ j
N .

then u.union(v) —~ __ <

Same-Component (u,v):
If u.find-set() = v.find-set()
then return true
else return false

I

Winter term 11/12

Linked-list representation
. |

* X.make-set()

SR — i I N
L~ . x.find-set()
'L_/ e X.union(y)

A 4
A 4

Winter term 11/12

Linked-list representation

b.union(d)

A 4
A 4
A 4
A 4
A 4
A 4

Winter term 11/12 8

,Bad“ sequence of operations

"

—
e;.make-set() |e,
“ L
e,.make-set() |e,
E]
e,.-make-set() |e,
:]]]
e,.union(e,) e, e, _1. e, e,
W - : C L | [
e;.union(e,) e, el e — | e—-[e,)
e,.union(e,) e.— e.,.—.. e, > e ——1€1

The longer list is always appended_to the shorter list!
Pointer updates for the i-th operation e,.union(e;_,):

Bw of 2n -1 op_grations:

Mm & Z L = a4 w) = Q(U:Z)
z

Winter term 11/12 t=1 9

Improvement

"

Weighted-union heuristic

~—r

Always append the smaller list to the longer list.
(Maintain the length of a list as a parameter).

Theorem

Using the weighted-union heuristic, the running time of a sequence of
m

——

make-set, find-set, and union operations, n of which are make-set()
operations, -

IS 9(m + n log n).

Winter term 11/12 10

Proof - - - =

Consider element e.
element
Number of times e‘s pointer to the representative is updated: log n

N
‘ (D)

N>

e

)

Winter term 11/12 11

