Algorithm Theory

09 — Union-Find Data Structures

Dr. Alexander Souza

Winter term 11/12

Union-find data structures

"

Problem:

Maintain a collection of disjoint sets while supporting the following
operations:

e.make-set(): Creates a new set whose only member is e.
e.find-set(): Returns the set M, containing e.

L
. - ®e

union(M;, M;): Unites the sets M; and M; into a new set.

Winter term 11/12 2

Union-find data structures

Representation of set M, :

M, is identified by a representative, which is some
member of M.

Winter term 11/12 3

"

Union-find data structures

Operations using representatives:

e.make-set():
Creates a new set whose only member is e. The representative is e.

—

e.find-set():
Returns the name of the representative of the set containing e.

e.union(f):
Unites the sets M, and M that contain e and f into a new set M and
returns a member of M, U M; as the new representative of M.

The sets M, and M; are then ,destroyed".

Winter term 11/12 4

Observations

"

= If nis the number of make-set operations and m the total number of
make-set, find-set and union operations, then

" mM>=n

= after (n — 1) union operations, only one set remains in the
collection

Winter term 11/12 5

Application: Connected components

' \I\l IINWAG

Input: graph G =(V,E)
Output: collection of the connected components of G

Algorithm: Connected-Components
for all vin V do v.make-set()
for all (u,v) in E do
If u.find-set() =v.find-set()
then u.union(v)

Same-Component (u,v):
If u.find-set() = v.find-set()
then return true
® else return false

Winter term 11/12

Linked-list representation

— e b f a
. R R * X.make-set()
o x.find-set()
e X.union(y)
— g h d

Winter term 11/12 7

Linked-list representation

b.union(d)

A 4
A 4
A 4
A 4
A 4
A 4

Winter term 11/12 8

,Bad“ sequence of operations

"

—
e;.make-set() |e,
—

e,.make-set() |e,
E]
e,.-make-set() |e,

:]]]
e,.union(e
aunion(e) o1 o . od fo

: C 1 1] s W]
e;.union(e,) o e o ' e
) 3 o (€1 €7 2 1

_ 1 1] .
e,.union(e,) e.— e.,.—.. e, > e ——1€1

The longer list is always appended to the shorter list!
Pointer updates for the i-th operation e,.union(e;_,):
Running time of 2n -1 operations:

Winter term 11/12 9

"

Improvement

Weighted-union heuristic

Always append the smaller list to the longer list.
(Maintain the length of a list as a parameter).

Theorem

Using the weighted-union heuristic, the running time of a sequence of m

make-set, find-set, and union operations, n of which are make-set() operations,
is O(m + nlog n).

etk +) (s o (o)

u ("‘"'“‘) b~ L /ch[(—v\.)wm evwo(xa,\

Winter term 11/12 10

Proof

"

Consider element e.
Number of times e‘s pointer to the representative is updated: log n

Winter term 11/12 11

Disjoint-set forests

» a.make-set()

« y.find-set()

 d.union(e): Make the representative of one set (e.g. f) the parent of
the representative of the other set.

Winter term 11/12 12

Example Bt Sepuee

m = total number of operations (> 2n)

fori=1to ndo e.make-set() @ @ - @
fori=2to ndo e.union(e; ,)
fori=1tqfdo e, .find-set() %\

n-th step @ A

n
running time of f find-set operations: O©(f * n)
Y bl L b

Winter term 11/12 13

Union by size

additional variable:
e.size = (# nodes in the subtree rooted at e)
nodes

—— L ——

e.make-set()
1 e.parent=¢e
2 esize=1

e.union(f)
1 link(e.find-set(), f.find-set())

— —_——

14

Winter term 11/12

Union by size
link(e,f)

1if e.size >f.size

2 thenf.parent=e
e.size = e.size + f.size

else [* e.size < f.size */
e.parent = f 14
f.size = e.size + f.size

O O A~ W

Winter term 11/12 15

"

Union by size

Theorem
The method union-by-size maintains the following invariant:

A tree of hEight h contains at least 2" nodes.

A A (&W- sz
Proof _
h, h, OrT
v Tl v 3’:/{:20:%26\
T 7 T _|_._| —~ _|_._| ~h,
[T 21T g =Tz l g,=T/>2"
+a 7 7

Winter term 11/12

Union by size

‘ 1l;
W "

Case 1: The height of the new tree is equal to the height of T,. [=L,
N

3/ = gl-i_gzzglzzhl =1 .

Case 2: The new tree T has a greater height.
height of T: h, + 1=1

(A

72 10224)
g:g1+922 i 2:2h2+1= 2 ~

Consequence

(L.AYU(o LeyaHnnic
The running time of a_find-set operation is O(log n), where n is the
number of make-set operations. -

Winter term 11/12 17

Path compressio

ﬂ«}a«k ROl Gaple et Ao

e.find-set()

1 if e ze.parent | e & wet gost

-

2 then e.parent = e.parent.find-set() [e r%* = ve provetetive
3 return e.parent

Winter term 11/12 18

Analysis of the running time

@ total number of operations,

@ of which are find-set operations and

(1 of which are make-set operations
—> at most n — 1 union operations

Union by size: wilked pate Counpyveryrin
O(n + flog n)

find-set operation with path compression:
Iff<n, &n +flog n)

If f>n, Q(f’lon)

7L

Winter term 11/12 19

Analysis of the running time

"

Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the
running time of@disjoint-set operations onnelements is

{ O(m * o (m,n)), 7

where « (m,n) is the inverse of Ackermann’s function.

Winter term 11/12 20

Ackermann’s function and its inverse

Ackermann’s function A (s, S>

A(1,) =2 forj>1
A1, =A>1-1,2) fori>2
A@,) =A>l1-1,A0,)-1)) forij=>2
I ok M/{’Tf [«w"

iInverse of Ackermann’s function

e(m,n) = mindi >1A(i,|m/n)>logn}
f}/wa\m MW(? oo

4/&«40(0 gQ(ﬂﬁﬂ,M) éL/

Winter term 11/12

21

Ackermann’s function and its inverse

"

=
w
N
||
>
N
N
||
=
>
N
=
||
N
D
||
H
(o))

a(m,n)< 4, for n satisfyinglogn < 2

Winter term 11/12 22

