n

Algorithm Theory

09 - Union-Find Data Structures

Dr. Alexander Souza

Union-find data structures

Problem:

Maintain a collection of disjoint sets while supporting the following operations:
e.make-set(): Creates a new set whose only member is e.

e.find-set(): Returns the set M_{i} containing e.

union $\left(M_{i}, M_{j}\right): \quad$ Unites the sets M_{i} and M_{j} into a new set.

Union-find data structures

Representation of set M_{i} :
M_{i} is identified by a representative, which is some member of M_{i}.

Union-find data structures

Operations using representatives:
e.make-set():

Creates a new set whose only member is e. The representative is e.
e.find-set():

Returns the name of the representative of the set containing e.
e.union(f):

Unites the sets M_{e} and M_{f} that contain e and f into a new set M and returns a member of $M_{e} \cup M_{f}$ as the new representative of M.
The sets M_{e} and M_{f} are then „destroyed".

Observations

- If n is the number of make-set operations and m the total number of make-set, find-set and union operations, then
- m >= n
- after ($n-1$) union operations, only one set remains in the collection

Application: Connected components

Input: graph $G=(V, E)$
Output: collection of the connected components of G

Algorithm: Connected-Components
for all v in V do v.make-set()
for all (u, v) in E do
if u.find-set() $\neq v$.find-set()
then u.union(v)

Same-Component (u, v):
if u.find-set() $=v$. find-set()
then return true
else return false

Linked-list representation

- x.make-set()
- x.find-set()
- x.union(y)

Linked-list representation

b.union(d)

„Bad" sequence of operations

!
e_{n}. make-set()

$e_{2} \cdot \operatorname{union}\left(e_{1}\right)$
$e_{3} . \operatorname{union}\left(e_{2}\right)$
:

$e_{n} \cdot \operatorname{union}\left(e_{n-1}\right)$

The longer list is always appended to the shorter list!
Pointer updates for the i-th operation e_{i} union $\left(e_{i-1}\right)$:
Running time of $2 n-1$ operations:

Improvement

Weighted-union heuristic

Always append the smaller list to the longer list. (Maintain the length of a list as a parameter).

Theorem

Using the weighted-union heuristic, the running time of a sequence of m make-set, find-set, and union operations, n of which are make-set() operations, is $O(m+n \log n)$.
hemprovement: $O(m \cdot \sigma(m, n))$

$$
\alpha(m, n) \text { inverse Ackermane function }
$$

Proof

Consider element e.
Number of times e's pointer to the representative is updated: $\log n$

Disjoint-set forests

- a.make-set()
- y.find-set()
- d.union(e): Make the representative of one set (e.g. f) the parent of the representative of the other set.

Example Bad Sequme

$m=$ total number of operations $(\geq 2 n)$

running time of f find-set operations: $\quad \Theta(f * n)$

$$
\uparrow \text { limer ~ bad. }
$$

Union by size

additional variable:

e.size $=(\#$ nodes in the subtree rooted at $e)$
e.make-set()

1 e.parent =e
2 e.size = 1
e.union(f)

1 link(e.find-set(), f.find-set())

Union by size

link(e,f)

1 if e.size \geq f.size

2 then f.parent =e
3 e.size $=$ e.size + f.size
4 else /* e.size < f.size */
$5 \quad$ e.parent $=f$
$6 \quad$ f.size $=$ e.size + f.size

Union by size

Theorem

The method union-by-size maintains the following invariant:
A tree of height h contains at least 2^{h} nodes.

Union by size

h
Case 1: The height of the new tree is equal to the height of T_{1}. $h=h_{1}$

$$
g=g_{1}+g_{2} \geq g_{1} \geq 2^{h_{1}}=2^{h}
$$

Case 2: The new tree T has a greater height. height of T : $h_{2}+1=h$

$$
\begin{aligned}
& n_{2}+1=4 \geqslant 2 \cdot g_{2} \geqslant 2 \cdot 2_{u}^{n_{2}} \\
& g=g_{1}+g_{2} \geq 2^{n_{2}}+2^{n_{2}}=2^{n_{2}+1}=2^{4}
\end{aligned}
$$

国

Consequence

Heright is lejaithmic
The running time of a find-set operation is $\mathrm{O}(\log n)$, where n is the number of make-set operations.

Furthe in proverment

Path compression during 'find-set' operations IIf

Slegent recustive inplemuntation

Analysis of the running time

(m) total number of operations,
(f) of which are find-set operations and
(1) of which are make-set operations
\rightarrow at most $n-1$ union operations

Union by size: without path comprersion
$\mathrm{O}(n+f \log n)$
find-set operation with path compression:
If $f<n, \Theta(n+f \log n)$
If $f \geq n, \Theta\left(f \cdot \log _{\left.\frac{1+7 f n}{} n\right)}^{\geqslant 2}\right.$

Analysis of the running time

Theorem (Union by size with path compression)

Using the combined union-by-size and path-compression heuristic, the running time of m disjoint-set operations on n elements is

$$
\Theta(m \text { * } \alpha(m, n)),
$$

where $\alpha(m, n)$ is the inverse of Ackermann's function.

Ackermann's function and its inverse

Ackermann's function $\quad A\left(m_{1}, i, j\right)$

$$
\begin{array}{ll}
A(1, j)=2^{j} & \text { for } j \geq 1 \\
A(i, 1)=A(i-1,2) & \text { for } i \geq 2 \\
A(i, j)=A(i-1, A(i, j-1)) & \text { for } i, j \geq 2 \\
\text { grous ex tremely part } &
\end{array}
$$

inverse of Ackermann's function

$$
\begin{aligned}
& \alpha(m, n)=\min \{i \geq 1 A(i,\lfloor m / n\rfloor)>\log n\} \\
& \text { grow extrumely How } \\
& n=10^{50} \text { a }(m, n) \leq 4
\end{aligned}
$$

Ackermann's function and its inverse

$$
\begin{aligned}
A(i,\lfloor m / n\rfloor) & \geq A(i, 1) \\
A(2,1) & =A(1,2)=2^{2}=4 \\
A(3,1) & =A(2,2)=A(1, A(2,1))=2^{4}=16 \\
A(4,1) & =A(3,2)=A(2, A(3,1))=A(2,16)
\end{aligned}
$$

$$
\geq 2^{2^{2^{2^{2}}}}=2^{65536}
$$

$$
\alpha(m, n) \leq 4 \text {, for } n \text { satisfying } \log n<2^{65336}
$$

